Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Pika Pika
20 tháng 5 2021 lúc 14:38

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011

Vì 2011>2009 suy ra MinA =2009

 

Pika Pika
20 tháng 5 2021 lúc 15:14

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2009

 MinA =2009

Thu Thao
20 tháng 5 2021 lúc 15:38

undefined

kim taehyung
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 lúc 21:12

Áp dụng BĐT trị tuyệt đối ta có:

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

\(\Rightarrow A_{min}=2011\)

Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)

Trần Việt Hoàng
Xem chi tiết
Yuuki Akastuki
27 tháng 5 2018 lúc 19:19

vào phần câu hỏi tương tự là có đáp án nhek bn

Kaori Miyazono
27 tháng 5 2018 lúc 19:22

Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)

Vậy .....

phan huy hồng phúc
22 tháng 1 2020 lúc 17:25

sai rồi để A nhỏ nhất thì phải bằng 1

Khách vãng lai đã xóa
Quang Hùng and Rum
Xem chi tiết
Hoàng Phúc
21 tháng 4 2016 lúc 15:46

A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|

Áp dụng BĐT:|a|+|b|>=|a+b|

Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011

Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2

Hồ Thị Hạnh
Xem chi tiết

Ta có : A = |2x+2|+|2x-2013|

           A = |2x+2|+|2013-2x| \(\ge\)2x+2+2013-2x=2015

    Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1006\end{cases}}\)\(\left(x\in Z\right)\)\(\Leftrightarrow1\le x\le1006\)

Vậy để A = |2x+2|+|2x-2013| đạt GTNN là 2015 thì \(1\le x\le1006\)

Hok tốt

Khách vãng lai đã xóa

ta có

A = |2x + 2| + |2x - 2013|

 |2x + 2| \(\ge\) \(2x+2\)\(\forall\)  \(x\in Z\)

  |2x - 2013|  \(\ge\) \(2013-2x\)   \(\forall\) \(x\in Z\)

\(\Rightarrow\text{​​}\) A = |2x + 2| + |2x - 2013|  \(\ge\)\(2x+2\)  +   \(2013-2x\)  \(=\)       \(2015\)         \(\forall\)\(x\in Z\)

dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+2\ge0\\2013-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ge-2\\x\le1006\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1006\end{cases}}}\)

vậy min A=2015  \(\Leftrightarrow\)  \(-1\le x\le1006\)

Khách vãng lai đã xóa
Nguyễn Đức Anh
Xem chi tiết
Tiểu tinh linh
Xem chi tiết
Trần Ngô Hạ Uyên
Xem chi tiết
KAl(SO4)2·12H2O
5 tháng 3 2018 lúc 21:02

A = |2x - 2| + |2x - 2013|

   = |2x - 2| + |2013 - 2x| \(\ge\) |2x - 2 + 2013 - 2x| = 2011

Dấu "=" xảy ra khi: (2x - 2).(2013 - 2x) \(\ge\) 0

Trường hợp 1: \(\hept{\begin{cases}2x-1\ge0;2013-2x\ge0\\x\ge\frac{1}{2};x\ge\frac{2013}{2}\end{cases}}\)

=> x \(\ge\) 2013/2

Trường hợp 2: \(\hept{\begin{cases}2x-1\le0;2013-2x\le0\\x\le\frac{1}{2};x\le\frac{2013}{2}\end{cases}}\)

=> x \(\ge\)1/2

Từ Trường hợp 1: 

=> Ko có giá trị nào thỏa mãn yêu cầu của đề bài

Hà Trí Kiên
Xem chi tiết

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3