Cho hình thang vuông ABCD có AB // CD , A^ = 9O độ . và CD= 2AB . vẽ DH vuông góc vs AC. M là trung điểm HC . chứng minh BMD = 90 độ .
cho hình thang vuông ABCD ( AB//CD ; AD vuông góc AB ) có CD= 2AB . DH vuông góc AC . M ;N là trung điểm HD ; HC . Chứng minh :
a, MN = AB .
b, ABNM là hình bình hành
c , M là trực tâm tam giác AND .
d, góc BND =90 độ
cần gấp nha mn !
ai nhanh mik tick cho :>>>
Cho hình thang ABCD. Có Â = D^ = 90 độ và CD = 2.AB. Kẻ DH vuông góc AC tại H, gọi M là trung điểm của HC. C/m góc BMD = 90 độ
Ko sai đâu bạn đề thi HSG Toán Tỉnh Lâm Đồng đó!
Gọi K là trung điểm của DH.
Xét \(\Delta\)DHC: K là trung điểm DH, M là trung điểm HC
=> MK là đường trung bình \(\Delta\)DHC => MK//CD
Do CD vuông góc AD => MK vuông góc với AD
=> MK=1/2CD. Mà AB=1/2CD => MK=AB
MK//CD, AB//CD => AB//MK
Xét tứ giác AKMB:
MK=AB, MK//AB => AKMB là hình bình hành => AK//BM (1)
Xét \(\Delta\)ADM: MK vuông góc với AD (cmt), DK vuông góc với AM tại H
=> K là trực tâm \(\Delta\)ADM => AK vuông góc với DM (2)
Từ (1) và (2) => BM vuông góc với DM (Quan hệ song song, vuông góc)
=> ^BMD=900 (đpcm).
Cho hình thang vuông ABCD, có góc A= góc D= 90 độ, AB=\(\frac{1}{2}\) CD và DH vuông góc AC. Gọi M là trung điểm của HC. Tính số đo góc BMD
Có 1 phần tư quả táo hỏi xem có bao nhiêu quả táo và số đó là 54
Câu 1) Cho hình thang vuông ABCD, góc A = góc D = 90o, Cạnh CD = 2AB, DH vuông góc với AC, M là trung điểm HC. Chứng minh BM vuông góc với MD.
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
Giúp mình câu này đc ko ạ, 3 đời mình xin cảm ơn =))
Cho hình thang vuông ABCD ( Góc A=góc D=90 độ) có AB=1/2 CD. Gọi H là hình chiếu của D trên AC. M là trung điểm HC. Chứng minh góc BMD=90 độ
cho hình thang vuông ABCD ( góc A =góc D =90 độ ) có AB = 1 phần 2 CD . gọi H là hình chiếu của D trên AC . M là trung điểm của HC . chứng minh góc BMD = 90 độ
P/s:mình đang cần gấp các bạn giúp mình nhanh nhanh được không
cho ABCD hình thang vuông có góc A = 90*, đáy CD gấp hai lần đáy AB. Vẽ Be vuông góc với CD tại E . Vẽ DH vuông góc với AC tại H. Gọi M và N lần lượt là trung điểm của HC và HD.
a) CM : ABED hình chữ nhật
b) CM: ABMN hình bình hành.
C) AC cắt BE tại I. Chứng minh A và C đới xứng qua I
d) Tính góc BMD