\(M=\frac{10^{2015}+1}{10^{2016}+1}\)
\(N=\frac{10^{2016}+1}{10^{2017}+1}\)
So \(M\) với \(N\)
1/ So sánh: A=\(\frac{10^{2015}+1}{10^{2016}+1}\) và B=\(\frac{10^{2016}+1}{10^{2017}+1}\)
2/ Tính:M=\(5+5^2+5^3+...+5^{2016}\)
3/ Tìm số ab biết ab = (a+b)2 (ab có gạch trên đầu)
1/ ta có:
A = \(\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10^{2016}+10}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)
B = \(\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10^{2017}+10}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
vì \(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\) => 10A > 10B
=> A > B
vậy A > B
2/ ta có: M = 5 + 52 + 53 + ... + 52016
=> 5M = 52+53+54+...+52017
=> 5M - M = (52+53+54+...+52017) - (5+52+53+...+52016)
=> 4M = 52017- 5
=> M = \(\frac{5^{2017}-5}{4}\)
vậy M = \(\frac{5^{2017}-5}{4}\)
SO SÁNH A VÀ B BIẾT:
A = \(\frac{10^{2016}+1}{10^{2015}+1}\)VÀ B = \(\frac{10^{2017}+1}{10^{2016}+1}\)
Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)
\(\Leftrightarrow B>A\)
Bài 1:Một xe tải chạy từ A và có thể đến B sau 6 giờ .Sau khi xe tải chạy được 2 giờ thì 1 xe ô tô con khởi hành từ B chạy về A và gặp xe tải sau 1 giờ 36 phút .tính thời gian xe con chạy từ B về A
Bài 2:Tìm x biết
a,\(\frac{x}{6}\)\(+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{36}+\frac{x}{45}+\frac{x}{55}+\frac{x}{66}+\frac{x}{78}=\frac{220}{39}\)
b,\(2+4+6+....+2x=156\)
Bài 3:So sánh
a,A=\(\frac{2015}{x^m}+\frac{2015}{x^n}\)Và B=\(\frac{2014}{x^m}+\frac{2016}{x^n}\)
b,C=\(\frac{2015\cdot2016-1}{2015\cdot2016}\)Và D=\(\frac{2016\cdot2017-1}{2016\cdot2017}\)
c,E=\(\frac{5}{10^{2015}}+\frac{11}{10^{2016}}\)Và F=\(\frac{11}{10^{2015}}+\frac{5}{10^{2016}}\)
d,S=\(\frac{1}{2}+\frac{2}{2^3}+.....+\frac{n}{2^n}+.....+\frac{2017}{2^{2017}}\) \(với\)\(2\)
.\(A=\frac{10^{2015}+1}{10^{2016}+1}\) VÀ \(B=\frac{10^{2016}+1}{10^{2017}+1}\)
SO SÁNH GIÙM NHE
A>B.Các bạn khác chọn (k) đúng cho mình nhé .
So sánh : N=\(\frac{6}{10^{2015}}\)+ \(\frac{8}{10^{2016}}\) và M=\(\frac{8}{10^{2015}}\) + \(\frac{6}{10^{2016}}\)
\(N=\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=M=\frac{8}{10^{2015}}+\frac{6}{10^{2016}}\)
Hk tốt
k nhé
Ta có :N= \(\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2016}}\)
M=\(\frac{8}{10^{2015}}+\frac{6}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2015}}\)
Ta Xét: \(\frac{2}{10^{2016}},\frac{2}{10^{2015}}\)
Vì 102016>102015
Nên: \(\frac{2}{10^{2016}}< \frac{2}{10^{2015}}\)
Do đó : N<M
So sánh \(A=\frac{10^{2016}-1}{10^{2017}-11}\) và \(B=\frac{10^{2016}+1}{10^{2017}+9}\)
Ta có : \(A=\frac{10^{2016}-1}{10^{2017}-11}\)
\(\Leftrightarrow10.A=\frac{10.\left(10^{2016}-1\right)}{10^{2017}-11}=\frac{10^{2017}-10}{10^{2017}-11}\)
\(=\frac{10^{2017}-11+1}{10^{2017}-11}=1+\frac{1}{10^{2017}-11}\)
Lại có : \(B=\frac{10^{2016}+1}{10^{2017}+9}\)
\(\Leftrightarrow10.B=\frac{10\left(10^{2016}+1\right)}{10^{2017}+9}=\frac{10^{2017}+10}{10^{2017}+9}\)
\(=\frac{10^{2017}+9+1}{10^{2017}+9}=1+\frac{1}{10^{2017}+9}\)
Do : \(10^{2017}-11< 10^{2017}+9\) \(\Rightarrow\frac{1}{10^{2017}-11}>\frac{1}{10^{2017}+9}\)
\(\Rightarrow1+\frac{1}{10^{2017}-11}>1+\frac{1}{10^{2017}+9}\)
hay \(A>B\)
Vậy : \(A>B\)
So sánh
A = 10^2016 + 1 / 10^2015 + 1
B = 10^2017 + 1 / 10^2016 + 1
Ta có :
\(A=\frac{10^{2016}+1}{10^{2015}+1}=\frac{\left(10^{2016}+1\right).10}{\left(10^{2015}+1\right).10}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10^{2017}+10}{10^{2016}+10}\)
Vì \(10^{2017}=10^{2017}\)và \(10>1\)nên \(10^{2017}+10>10^{2017}+1\)( 1 )
Vì \(10^{2016}=10^{2016}\)và \(10>1\)nên \(10^{2016}+10>10^{2016}+1\)( 2 )
Từ ( 1 ) và ( 2 ) , suy ra : \(\frac{10^{2017}+10}{10^{2016}+10}>\frac{10^{2017}+1}{10^{2016}+1}\)
Vậy \(A>B\)
\(B=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10^{2016}+1+9}{10^{2017}+1+9}=\frac{10^{2016}+10}{10^{2017}+10}=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}=\frac{10^{2015}+1}{10^{2016}+1}\)
lm tương tự vs B ta có
\(A=\frac{10^{2015}+1}{10^{2014}+1}\)
suy ra A>B
Ta có: A=\(\frac{10^{2016}+1}{10^{2015}+1}\)
=>\(\frac{1}{A}=\frac{10^{2015}+1}{10^{2016}+1}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+10}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+1+9}{10\left(10^{2016}+1\right)}\)
\(=\frac{1}{10}+\frac{9}{10^{2017}+10}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}\)
=>\(\frac{1}{B}=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2017}+10}{10\left(10^{2017}+1\right)}\)
\(=\frac{10^{2017}+1+9}{10\left(10^{2017}+1\right)}=\frac{1}{10}+\frac{9}{10^{2018}+10}\)
Vì\(10^{2017}< 10^{2018}=>10^{2017}+10< 10^{2018}+10\)
\(=>\frac{9}{10^{2017}+10}>\frac{9}{10^{2018}+10}=>\frac{1}{10}+\frac{9}{10^{2017}+10}>\frac{1}{10}+\frac{9}{10^{2017}+10}\)
\(=>\frac{1}{A}>\frac{1}{B}=>A< B\)
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
So sánh:\(A=\frac{10^{2015}-1}{10^{2016}-1}vàB=\frac{10^{2014}+1}{10^{2015}+1}\)