So sánh A và B biết
\(A=\frac{17^{17}+1}{17^{18}+1}\)
và \(B=\frac{17^{25}+1}{17^{26}+1}\)
So sánh A và B biết:
\(A=\frac{17^{18}+1}{17^{19}+1}\) ; \(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta có:
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}\)
\(17A=\frac{(17^{19}+1)+16}{(17^{19}+1)}=1+\frac{16}{17^{19}+1}\) (1)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}\)
\(17B=\frac{(17^{18}+1)+16}{(17^{18}+1)}=1+\frac{16}{17^{18}+1}\) (2)
Từ (1) và (2) => \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
=>\(17A< 17B\)
Hay \(A< B\)
Vậy \(A< B\)
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta co
A=17.17^17+1/17.17^18+1
=1+(17^17+1/17^18+1)
Vi B=17^17+1/17^18+1
=>.B<A
chuan lun
GIÚP MK VỚI:
So sánh A và B biết:
\(A=\frac{17^{18}+1}{17^{19}+1};B=\frac{17^{17}+1}{17^{18}+1}\)
AI NHANH NHẤT MÀ RÕ RÀNG NHẤT MK TICK CHO.
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17A< 17B\)
\(\Leftrightarrow A< B\)
Trả lời
\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(17^{19}+1>17^{18}+1\)
\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)
\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)
\(\Rightarrow B>A\)
so sánh \(A=\frac{17^8+1}{17^{9+1}}\)và\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17A=\frac{17^9+17}{17^9+1}=\frac{17^9+1+16}{17^9+1}=\frac{17^9+1}{17^9+1}+\frac{16}{17^9+1}=1+\frac{16}{17^9+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
vì \(\frac{16}{17^{18}+1}< \frac{16}{17^9+1}\)nên \(17B< 17A\)
\(=>B< A\)
so sánh A=: \(\frac{17^{18}-1}{17^{20}-1}\)Và B= \(\frac{17^{17}-1}{17^{19}-1}\)
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)
\(\Rightarrow A< B\)
\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)
\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)
\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)
\(A=\frac{17^{18}-1}{17^{20}-1}\)
\(17^2A=\frac{17^2\left(17^{18}-1\right)}{17^{20}-1}=\frac{17^{20}-17^2}{17^{20}-1}=\frac{17^{20}-1-288}{17^{20}-1}=1-\frac{288}{17^{20}-1}\)
\(B=\frac{17^{17}-1}{17^{19}-1}\)
\(17^2B=\frac{17^2\left(17^{17}-1\right)}{17^{19}-1}=\frac{17^{19}-17^2}{17^{19}-1}=\frac{17^{19}-1-288}{17^{19}-1}=1-\frac{288}{17^{19}-1}\)
Ta có : \(\frac{288}{17^{20}-1}< \frac{288}{17^{19}-1}\)nên \(-\frac{288}{17^{20}-1}>-\frac{288}{17^{19}-1}\)
\(\Rightarrow A>B\)
So sánh A= \(\frac{17^{18}+1}{17^{19}+1}\)và B= \(\frac{14^{17}+1}{17^{18}+1}\)
1) So sánh : A= \(\frac{17^{18}+1}{17^{19}+1}\) và B = \(\frac{17^{17}+1}{17^{18}+1}\)
2) So sánh: C = \(\frac{98^{99}+1}{98^{89}+1}\)và D = \(\frac{98^{98}+1}{98^{88}+1}\)
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
BÀI 1 : So sánh
A = \(\frac{17^{18}+1}{17^{19}+1}\)và B = \(\frac{17^{17}+1}{17^{18}+1}\) So sánh A và B
\(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)
\(\frac{2003\times2004-1}{2003\times2004}\)và \(\frac{2004\times2005-1}{2004\times2005}\)
So sánh: A=\(\frac{17^{18}+1}{17^{19}+1}\) và B=\(\frac{17^{17}+1}{17^{18}+1}\)
Không biết có ai giúp đc tuôi không :
So sánh : \(A=\frac{17^{18}+1}{17^{19}+1}\) và \(B=\frac{17^{17}+1}{17^{18}+1}\)