Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thùy Dương
Xem chi tiết
Hùng Hoàng
30 tháng 11 2015 lúc 21:16

\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)

\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)

\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)

\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)

suy ra

\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)

 

ha duy to
30 tháng 11 2015 lúc 20:58

toàn là những bài toán khó vậy

Nguyễn Quốc Khánh
30 tháng 11 2015 lúc 21:12

\(\frac{1+\frac{1+\frac{5}{4}}{2}}{1+\frac{2}{1+\frac{6}{5}}}-x=\frac{\frac{\frac{\frac{5}{3}}{3}+1}{3}+1}{\frac{3}{\frac{\frac{3}{2}+1}{\frac{5}{2}}}+1}\)

\(\frac{1+\frac{9}{\frac{4}{2}}}{1+\frac{2}{\frac{11}{5}}}-x=\frac{\frac{\frac{14}{9}}{3}+1}{\frac{3}{1}+1}\)

 

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nhím Tatoo
Xem chi tiết
Nhím Tatoo
8 tháng 7 2016 lúc 9:43

các bn ơi giải giúp mình đi mà

Pham hong duc
Xem chi tiết
☆☆《Thiên Phi 》☆☆
6 tháng 4 2019 lúc 23:27

Bạn hỏi hay trả lời luôn dzậy?

Nguyễn Châu Mỹ Linh
Xem chi tiết
Hatsune Miku
19 tháng 6 2018 lúc 15:39
​29/152323/125/65/4-31/1231/6-13/31087/1801/61/62-67/24
Phí Nhật Minh
11 tháng 4 2022 lúc 16:57
Ôi mẹ ơi dài khiếp
Khách vãng lai đã xóa
Incursion_03
Xem chi tiết

??? Đăng cái j z

Nguyen Ha Tuong Vien
1 tháng 3 2022 lúc 7:56

ủa toán lớp mấy chứ ko phải lớp 1

Khách vãng lai đã xóa
Ngô Văn Đăng Khoa
1 tháng 3 2022 lúc 8:01

uk ko phải toán lớp 1

Khách vãng lai đã xóa
Tiệc cưới Thùy Tín
Xem chi tiết
Trần Đăng Nhất
6 tháng 10 2016 lúc 16:25

giải:

ta có :

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)

 
Ngô Huy Hiếu
Xem chi tiết
Ngô Huy Hiếu
14 tháng 3 2018 lúc 21:26

Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!

nguyễn thị thúy nga
Xem chi tiết
Phùng Minh Quân
15 tháng 4 2018 lúc 13:18

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

nguyễn thị thúy nga
15 tháng 4 2018 lúc 13:00

tra loi nhah giup m nha

Phùng Minh Quân
15 tháng 4 2018 lúc 13:07

\(a)\) Đặt \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\) ta có : 

\(A>\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\)

Do từ \(41\) đến \(80\) có \(\left(80-41\right):1+1=40\) số nên có \(40\) phân số \(\frac{1}{80}\) suy ra : 

\(A>40.\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)

\(\Rightarrow\)\(A>\frac{1}{2}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{41}+\frac{1}{41}+\frac{1}{41}+...+\frac{1}{41}\)

Do từ \(41\) đến \(80\) có \(\left(80-41\right):1+1=40\) số nên có \(40\) phân số \(\frac{1}{41}\) suy ra : 

\(A< 40.\frac{1}{41}=\frac{40}{41}< 1\)

\(\Rightarrow\)\(A< 1\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(\frac{1}{2}< A< 1\) ( đpcm ) 

Vậy \(\frac{1}{2}< A< 1\)

Chúc bạn học tốt ~ 

Lê Phan Lê Na
Xem chi tiết
Y
14 tháng 5 2019 lúc 18:13

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)