chứng tỏ rằng 6^300+6^299+6^298 chia hết cho 43
Chứng tỏ 6^300+6^299+6^298 chia hết cho 43.
6300+6299+6298
= 6298 .( 6^2+6+1)
= 6298 . 43
Vì 43chia hết cho 43 => 6300 + 6299 + 6298 chia hết cho 43
Chứng tỏ: 6300 + 6299 + 6298 chia hết cho 43
\(6^{300}+6^{299}+6^{298}=6^{298}\left(6^2+6+1\right)\)
Ta có :
\(6^{300}+6^{299}+6^{298}\)
\(=6^{298}\times6^2+6^{298}\times6+6^{298}\)
\(=6^{298}\times\left(6^2+6+1\right)\)
\(=6^{298}\times43\)
Vậy \(6^{300}+6^{299}+6^{298}⋮43\)
_Chúc bạn học tốt_
\(6^{300}+6^{299}+6^{298}\)
\(=6^{298}\left(6^2+6+1\right)\)
\(=6^{298}.43⋮43\)
\(\RightarrowĐPCM\)
Chứng minh rằng:
a) 7^6+7^5-7^4 chia hết cho 55 ;
b) 16^5+2^15 chia hết cho 33;
c) 6^300+6^299+6^298 chia hết cho 43;
d)5^2001+5^2000+5^1999 chia hết cho 155
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
ggghghghghghgghghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhfffffgggggggggggggggggggggggggggggggggggggggggggggggggggggggggdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddbbbgjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbblllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnn | |
Cho : B = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 -12 + ... + 298 - 299 - 300 + 301 + 302
Chứng minh rằng B chia hết cho 3
B= 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 +...+ 298 - 299 - 300 + 301 + 302
= 1 + ( 2 - 3 - 4 + 5) + ( 6 - 7 - 8 + 9) + ( 10 - 11 - 12 + 13) +...+ (298 - 299 - 300 + 301 ) + 302
= 1 + 0 + 0 +...+ 0 + 302
= 1 + 302 = 303 chia hết cho 3
=> B chia hết cho 3
6300+6299+6298:43
52015+52014+52013:155
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
cho B=6^30+6^31+6^32+6^33+6^33+6^34+6^35 chứng tỏ B chia hết cho 43
Cho E= 62+63+64+....+661
chứng tỏ rằng E chia hết cho 7, E chia hết cho 43
bạn nào xong nhanh nhất mk sẽ tk cho nha
MÌNH ĐANG CẦN GẤP LẮM!!!
Ta có :
E = 62 + 63 + 64 + ... + 661
=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )
=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )
=> E = 252 + 62 . 252 + ... + 658 . 252
=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36
=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7
Ta có :
E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )
=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )
=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )
=> E = 1548 + 63 . 1548 + ... + 657 . 1548
=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43
=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43