tìm x,y thỏa mãn \(x+y\le6\) và \(\frac{25}{x}+\frac{1}{y}=6\)
Cho x > 1 và y > 4 thỏa mãn \(\sqrt{x}+\sqrt{y}\le6\) . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
Tìm x;y thỏa mãn x+y\(\le\)6 và \(\frac{25}{x}+\frac{1}{y}=6\)
Áp dụng BĐT Bunhiacopxki dạng mẫu số được :
\(\frac{5^2}{x}+\frac{1^2}{y}\ge\frac{\left(5+1\right)^2}{x+y}\ge\frac{6^2}{6}\)
Hay \(\frac{25}{x}+\frac{1}{y}\ge6\) . Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{x}{\frac{5^2}{x}}=\frac{y}{\frac{1^2}{y}}\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5y\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=1\end{cases}}\)
Vậy (x;y) = (5;1)
Cho x,y,z là 3 số dương thỏa mãn \(x^2+y^2+z^2\le6\) Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)
\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).
Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).
Cho x, y là các số thực dương thoả mãn ĐK \(x+y\le6\)
Tìm GTNN của P=\(x+y+\frac{6}{x}+\frac{24}{y}\)
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
toàn 1 lũ hãm điểm
Tìm x , y thỏa mãn điều kiện : \(\frac{1}{x}-\frac{1}{y}=\frac{1}{6}\)
Tìm x , y thỏa mãn :
a) \(\frac{1}{2}\times(\frac{3}{4}x-\frac{1}{2})^{2018}+\frac{2017}{2018}\times/\frac{4}{5}y+\frac{6}{25}/\le0\)0
b) \(2017\times/2x-y/+2018\times(y-4)^{2017}\le0\)
Tìm x,y,z thỏa mãn
\(\frac{x-7}{y-6}=\frac{7}{6}\) và x-y=-4
\(\frac{5x+7y}{6x+5y}=\frac{29}{28}\)và (x,y)=1
Cho x, y>0 và thỏa mãn. Chứng minh rằng: \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé