Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tâm Thư
Xem chi tiết
Nguyễn Anh Quân
30 tháng 12 2017 lúc 20:50

Nhận xét : số chính phương chia 5 dư 0;1;4

Đặt A = n.(n^2+1).(n^2+4)

Nếu n^2 chia hết cho 5 thì n chia hết cho 5 (vì 5 nguyên tố) => A chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5

=> đpcm

k mk nha

TRAN THI KIM NGAN
30 tháng 12 2017 lúc 20:53

(n^2+1).(n^2+4)

=n^2.(1+4)

=n^2.5

Vì5 chia hết cho 5 nên n^2.5 chia hết cho 5

Hay(n^2+1).(n^2+4) chia hết cho 5(đpcm)

Lê Tâm Thư
30 tháng 12 2017 lúc 20:58

thank you very much

nguyenkuku
Xem chi tiết
Vũ Như Mai
27 tháng 12 2016 lúc 12:22

Ta có: n + 10 = n + 2 + 8

Mà n + 2 \(⋮\)n + 2

=> 8 \(⋮\)n + 2 => n + 2 \(\in\)Ư(8) = {-1;1;-2;2;-4;4;-8;8}

Sau đó thay vào n + 2 thì tìm được n (làm nháp)

=> n + 10 \(⋮\)n + 2

Mình nghĩ cách giải bài này tương tự bài tìm n để n + 10 \(⋮\)n + 2

Đoàn Thị Việt Trang
27 tháng 12 2016 lúc 12:33

Có n + 2 chia hết cho n + 2

Để n + 10 chia hết cho n + 2 => [ ( n + 10 ) - ( n + 2 ) ] chia hết cho n + 2 => 8 chia hết cho n + 2

=> n + 2 thuộc { 1 ; 2; 4 ; 8 }

Lập bảng :

n + 2124

8

nLoại bỏ02

6

Mk tìm n luôn nhá : n thuộc { 0 ; 2 ; 6 }

Còn nếu chứng minh thì bỏ bước lập bảng là xong ! Duyệt nha bạn ! Cảm ơn !

o0o huy mtp o0o
27 tháng 12 2016 lúc 18:01

10 chia hết cho 2 n với n bằng nhau triệt tiêu đi

Lê Bảo Kỳ
Xem chi tiết
mi ni on s
14 tháng 5 2018 lúc 15:32

       \(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Ta thấy:    \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp   ( do n thuộc N )   nên chia hết cho  5

                \(5\left(n-1\right)n\left(n+1\right)\)chia hết cho  5

\(\Rightarrow\)\(n^5-n\) chia hết cho 5   (1)

    \(n^5-n=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\) chia hết cho 2,  cho 3

mà   \(\left(2;3\right)=1\) nên   \(n^5-n\)chia hết cho 6   (2)

Do  \(\left(5;6\right)=1\) nên từ (1) và (2)  suy ra:   \(n^5-n\)chia hết cho 30

huynh thanh tuyen
Xem chi tiết
Đặng Tiến
30 tháng 7 2016 lúc 12:00

\(n^3+2n+2016=\)

Hồ Thị Ngọc Như
Xem chi tiết
Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

Tào Tháo Đường
Xem chi tiết
Ngô Bá Hùng
22 tháng 8 2019 lúc 16:30

Cho A=n5-n

A = n⁵ - n
= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
{5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5 (2)
(1)(2)=> A chia hết cho 30 do (5,6)=1

Đinh Trà My
Xem chi tiết
Nguyễn Phương Hiền Thảo
16 tháng 1 2016 lúc 20:14

hình như câu 2 Nguyễn Hoài Linh copy

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

Super Saiyan God
Xem chi tiết
Nguyễn Anh Quân
1 tháng 12 2017 lúc 22:03

Nhận xét : số chính phương chia 5 dư 0 hoặc 1 hoặc 4

Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 là số nguyên tố )

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 

=> n.(n^2+1).(n^2+4) chia hết cho 5

Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5

=> n.(n^2+1).(n^2+4) chia hết cho 5

Vậy n.(n^2+1).(n^2+4) chia hết cho 5

k mk nha