tìm các số nguyên n không băng 1 biết n chia hết cho n-1
a Tìm số nguyên n sao cho n 2 chia hết cho n 3b Tìm tất cả các số nguyên n biết 6n 1 chia hết cho 3n 1
a) Tìm số nguyên n sao cho : n + 2 chia hết cho n - 3
b) Tìm tất cả các số nguyên n biết : (6n + 1) chia hết cho (3n - 1)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
tìm các số nguyên n không bằng 1 sao cho n chia hết cho n-1
1/ Tìm số nguyên n sao cho n + 2 chia hết cho n -3
2/ Tìm tất cả các số nguyên a biết: (6a +1) chia hết cho ( 3a -1)
3/ tìm 2 số nguyên a , b biết :a > 0 và a. (b - 2) =3
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
Tìm các số nguyên n biết
a) n + 1 chia hết cho n - 2
b) 2n + 1 chia hết cho n + 1
c) 3n + 2 chia hết cho n - 1
Tìm tất cả các số nguyên n biết:
a) n + 3 chia hết cho n + 1
b) n + 4 chia hết cho n -1
a.
n+3 chia hết cho n+1
=> n+1+2 chia hết cho n+1
=>(n+1)+2 chia hết cho n+1
=> 2 chia hết cho n+1
=> n +1 thuộc Ư(2)={-1,-2,1,2}
n+1 | -1 | -2 | 1 | 2 |
n | -2 | -3 | 0 | 1 |
Vậy....
b.
n+4 chia hết cho n-1
=> n-1+5 chia hết cho n-1
=> (n-1)+5 chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-1,-5,1,5}
n-1 | -1 | -5 | 1 | 5 |
n | 0 | -4 | 2 | 6 |
Vậy....
a) ta có: n+1+2 chia hết cho n+1
=>2 chia hết cho n+1 nên n+1 E Ư(2)
n+1 E { -1; 1; -2; 2 }
n E { -2; 0; -3; ;1 }
b) ta có: n-1+5 chia hết cho n-1
=> 5 chia hết cho n-1 nên n-1 E Ư(5)
n-1 E { -1; 1; -5; 5 }
n E { 0; 2; -4; 6 }
Tìm các số nguyên n biết :
a, n - 6 chia hết cho n - 1
b, 2n + 3 chia hết cho n + 1
c, 2n - 7 chia hết cho 2n - 1
Tìm các số nguyên n biết :
a, n - 6 chia hết cho n - 1
b, 2n + 3 chia hết cho n + 1
c, 2n - 7 chia hết cho 2n - 1
n - 6 ⋮ n - 1 <=> ( n - 1 ) + 7 ⋮ n - 1
Vì n - 1 ⋮ n - 1 , để ( n - 1 ) + 7 ⋮ n - 1 <=> 7 ⋮ n - 1 => n - 1 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có bảng sau :
n - 1 | 1 | - 1 | 7 | - 7 |
n | 2 | 0 | 8 | - 6 |
Vậy n ∈ { - 6 ; 0 ; 2 ; 8 }
Các câu sau tương tự
tìm các số nguyên n biết n:3 chia hết cho n-1