GIẢI PHƯƠNG TRÌNH (\(x^{^{ }2}\) +1)(\(y^2\)+2)(\(z^2\) +8)= 32xyz
Giải các phương trình :
a) \(10\sqrt{x^3+1}=3\left(x^2+2\right)\)
b) \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)+32xyz\) vs x,y,z là số dương.
a/ Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)
\(\Rightarrow10ab=3\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(3a-b\right)\left(3b-a\right)=0\)
b/ Nó có phải là phương trình đâu
b/ \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)\ge2x.2\sqrt{2}y.2\sqrt{8}z=32xyz\)
tìm x;y;z biết
(x^2+1)(y^2+2)(z^2+8)=32xyz
Giai pt: (x2+1)(y2+2)(z2+8)=32xyz
TA CÓ:
\(x^2+1\ge2x\)
\(y^2+2\ge2y\sqrt{2}\)
\(z^2+8\ge2z\sqrt{8}\)
=> \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)\ge8xyz\sqrt{2.8}=32xyz\)
MÀ: \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)=32xyz\)
DẤU "=" XẢY RA <=> \(x^2=1;y^2=2;z^2=8\)
=> \(x;y;z=.....\)
Giải Phương trình nghiệm nguyên:
\(x^{2013}+y^{2016}+z^{2019}=2021^{2022}\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+z^2=8\\|x^3-y^3|+|y^3-z^3|+|z^3-x^3|=32\sqrt{2}\end{cases}}\)
1)tìm tất cả các bộ số nguyên (x;y;z)thỏa mãn phương trình
\(2^x+2^y+2^z=672\)
2)a)giải phương trình
\(5\sqrt{x+5}+5\sqrt{3x+4}=5x^2-11x-1\)
b)giải hệ phương trình
\(\hept{\begin{cases}x^2y^2+y^2=8\\2x^3y^3+xy^3-4y^2=8\end{cases}}\)
Cần gấp trong vòng 12h
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải hệ phương trình: \(\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=6\\x^3+y^3+z^3=8\end{cases}}\)
Giải phương trình nghiệm nguyên:
8.(2-x)+y^2-z^2=0 với y<x<10
Giải hệ phương trình \(\hept{\begin{cases}\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}=3\\\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}=9\end{cases}}\)
\(\hept{\begin{cases}\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}=3\left(1\right)\\\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}=9\left(2\right)\end{cases}}\)( ĐKXĐ : -8 < x ; y ; z < 2 )
Áp dụng bđt B.C.S cho pt (1) và (2) ta được :
\(\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}\le\sqrt{\left(1+1+1\right)\left(2-x+2-y+2-z\right)}\)
\(\Leftrightarrow3\le\sqrt{3\left(6-x-y-z\right)}\)
\(\Leftrightarrow3\le6-x-y-z\)
\(\Leftrightarrow x+y+z\le3\)(*)
\(\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}\le\sqrt{\left(1+1+1\right)\left(8+x+8+y+8+z\right)}\)
\(\Leftrightarrow9\le\sqrt{3\left(24+x+y+z\right)}\)
\(\Leftrightarrow81\le3\left(24+x+y+z\right)\)
\(\Leftrightarrow x+y+z\ge3\)(**)
Từ (*) và (**) => x + y + z = 3
<=> x = y = z =1 (Vì x ; y ; z có vai trò như nhau ) ( tm ĐKXĐ )
Vậy x = y = z = 1
P/S : Bài này cứ để ý mấy cái căn có vai trò như nhau là nghĩ ra dùng Bunhiacopxki luôn ^^