Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Hoàng Ngân
Xem chi tiết
Hoàng Ngân
31 tháng 5 2020 lúc 23:18

Nguyễn Lê Phước ThịnhPhạm Vũ Trí DũngMiyuki Misaki

giúp e vs ạ

Nguyễn Việt Lâm
31 tháng 5 2020 lúc 23:41

\(y=2+2cos\left(x-\frac{\pi}{6}\right)-7=2cos\left(x-\frac{\pi}{6}\right)-5\)

\(0\le x\le\pi\Rightarrow-\frac{\pi}{6}\le x-\frac{\pi}{6}\le\frac{5\pi}{6}\)

\(\Rightarrow-\frac{\sqrt{3}}{2}\le cos\left(x-\frac{\pi}{6}\right)\le1\)

\(\Rightarrow-\sqrt{3}-5\le y\le-3\)

\(y_{min}=-\sqrt{3}-5\) khi \(x=\pi\)

\(y_{max}=-3\) khi \(x=\frac{\pi}{6}\)

Nguyễn Quang Thắng
Xem chi tiết
Ngô Tấn Đạt
8 tháng 12 2016 lúc 15:29

1) \(-x-3=-2\left(x+7\right)\\ \Rightarrow-x-3=-2x-14\\ \Rightarrow-x+2x=-14+3\\ \Rightarrow x=-11\)

2) \(A=\frac{12}{\left(x+1\right)^2+3}\\ Tac\text{ó}:\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+3\ge3\\ \Rightarrow A\le\frac{12}{3}=4\)

Max A=4 khi x=-1

3) Đăt : \(n^2+4=k^2\\ \Rightarrow k^2-n^2=4\\ \Rightarrow\left(k-n\right)\left(k+n\right)=4\)

lập bang ra rồi tính

Dương Trọng Hòa
Xem chi tiết
Đặng Thị Hồng Nhung
Xem chi tiết
Dương Thùy Linh
Xem chi tiết
Van Le
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
alibaba nguyễn
3 tháng 11 2016 lúc 11:47

Ta có 

\(A\left(x^2-5x+7\right)=x^2\)

\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

Để pt này có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)

\(\Leftrightarrow3A^2-28A\le0\)

\(\Leftrightarrow0\le A\le\frac{28}{3}\)

Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)

Nguyễn Thiên Bình
Xem chi tiết
Vũ Việt Anh
30 tháng 12 2016 lúc 21:30

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

Huy Nguyễn Đức
30 tháng 12 2016 lúc 21:39

P+1=(8x+12)/(x^2+4)+1

P+1=(8x+12)/(x^2+4)+(x^2+4)/(x^2+4)

P+1=(x^2+8x+16)/(x^2+4)

P+1=(x+4)^2/(x^2+4) luôn lớn hơn hoặc bằng 0 do (x+4)^2 luôn lớn hơn hoặc bằng 0 và x^2+4 luôn lớn hơn 0 

suy ra P+1 luôn lớn hơn hoặc bằng 0

vậy P luôn lớn hơn hoặc bằng -1 dấu bằng xảy ra khi x=-4

Hoàng Phúc
30 tháng 12 2016 lúc 21:51

4-P=4-(8x+12)/(x^2+4)

=(4x^2+16-8x-12)/(x^2+4)=(4x^2-8x+4)/(x^2+4)=4(x^2-2x+1)/x^2+4 >=0 với mọi x

=>P <= 4 với mọi x

vậy maxP=4 ,dấu "=" xảy ra <=> x=1