tìm GTNN của biểu thức A = \(\frac{x^2-2x+2006}{x^2}\)
Tìm GTNN của biểu thức sau:
A= \(\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
tìm gtnn của biểu thức A=\(\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2
1. Cho biểu thức:
\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Tìm GTNN của biểu thức A
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN của biểu thức \(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
Giúp với
\(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
\(=\frac{2006\left(1+x\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2006\)
\(\ge\frac{2\sqrt{2006\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2006=2\sqrt{2006}+2006\)
Dấu = xảy ra khi:
\(2006\left(1+x\right)=1-x\)
\(\Leftrightarrow x=-\frac{2005}{2007}\)
Tìm GTNN của biểu thức A=\(\frac{x^2-2x+2017}{2017x^2}\)với x khác 0
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.
Tìm GTNN của biểu thức A = \(\frac{x^2-2x+2019}{2019x^2}\)
Tìm GTNN của biểu thức:
A=\(\frac{x^2-2x+2018}{x^2}\)
Với x>0