Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hữu Quang Tùng
Xem chi tiết
Phan Trường Vũ
15 tháng 12 2019 lúc 22:28

B1 :

a) (2x - 1)2

Khách vãng lai đã xóa
Trang Huyền
Xem chi tiết
Bao Cao Su
Xem chi tiết
Pham Van Hung
27 tháng 11 2018 lúc 18:13

Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)

\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)

\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)

\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)

\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)

Nguyễn Tài Vượng
Xem chi tiết
Darlingg🥝
11 tháng 11 2019 lúc 14:19

Bổ sung cái cậu ghi hình như mẫu thức \(6y^7t\)

Hai mẫu thức là \(6y^7t\) và \(3t^8\)

-BCNN(6,3) = 6

- Số mũ cao nhất của luỹ thừa là \(y\) là 7, ta chọn nhân tử \(y^7\)

- Số mũ cao nhất của luỹ thừa cơ số \(t\) là 8 ta chọn nhân tử \(t^8\)

Từ cách làm trên mẫu thức chung của hai phân thức là: \(6y^7t^8\)

Khách vãng lai đã xóa
Kiều Hoàng An
Xem chi tiết
Nguyễn Anh Quân
22 tháng 11 2017 lúc 15:43

1, a,= (x+2)^2/3.(x+2) = x+2/3

b,  = 3x.(x+4)/2x.(x+4) = 3/2

k mk nha

My Phan
Xem chi tiết
Jaki_VN123
Xem chi tiết
Nguyễn Anh Quân
14 tháng 1 2018 lúc 21:29

b, Có : |x| + |x-2| = |x| + |2-x| >= |x+2-x| = 2

Lại co : |x-1| >= 0

=> |x|+|x-1|+|x-2| >= 2

Dấu "=" xảy ra <=> x.(2-x) >= 0 và x-1=0 <=> x=1

Vậy x=1

Tk mk nha

Hoàng Chí Đức
Xem chi tiết
Nguyễn ngọc Duy Bảo
20 tháng 11 2017 lúc 17:12

fdsafdas

fdasfadsf

fdasfadsf

fdsafdsaf

fdsafsda

lê thanh tùng
Xem chi tiết
nguyễn thị thảo vân
24 tháng 10 2015 lúc 22:39

bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)

         =\(2\left(x-3\right)\left(x+y-3\right)\)

bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)

         P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

vậy Pmin=2 khi x=1 và y=-3