tính (4x3+4x4-5x3+5x-2)2015+2016
với x=\(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
tính
\(\left(4x^3+4x^4-5x^3+5x-2\right)^{2015}+2016\)
với x=\(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
Ta có
\(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{1}{2}\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)
\(=\frac{1}{2}.\frac{\left(\sqrt{2}-1\right)}{1}=\frac{\sqrt{2}-1}{2}\)
Ta lại có
\(x+1=\frac{\sqrt{2}-1}{2}+1=\frac{\sqrt{2}-1+2}{2}=\frac{\sqrt{2}+1}{2}\)
\(\Rightarrow x\left(x+1\right)=\frac{\sqrt{2}-1}{2}.\frac{\sqrt{2}+1}{2}=\frac{1}{4}\)
Ta lại có
\(4x^4+4x^3-5x^2+5x-2=4x^3\left(x+1\right)-5x^2+5x-2\)
\(=x^2-5x^2+5x-2=-4x^2\left(x+1\right)+9x-2\)
\(=-1+9x-2=-3+\frac{\sqrt{2}-1}{2}=\frac{\sqrt{2}-7}{2}\)
Giải tới đây thì mình nghĩ là bạn sai đề rồi. Bạn xem lại đề nhé
ờ sai đề thật , mk cũng làm đc rùi nhưng vẫn cảm ơn nha
Cho biểu thứcA=\(\left(4x^5+4x^4-5x^3+5x-2\right)^{2014}+2015\) Tính giá trị biểu thức A khi
x=\(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
tính GTBT \(M=\left(4x^5+4x^4-5x^3+5x-2\right)^{2015}+2016\)
tại \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
x = \(\frac{\sqrt{2}-1}{2}\)
tính x3 ; x4 ; x5 ( x3 =x.x2 ; x4 = x3.x .....)
Thay vô rồi tính nhé.
Giải phương trình, hệ phương trình:
a) \(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
b) \(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
c)\(\sqrt{x^2-3x+2}+\sqrt{x-3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
d)\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x>2013\\y>2014\\z>2015\end{matrix}\right.\)
\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2013}-1}{x-2013}+\frac{1}{4}-\frac{\sqrt{y-2014}-1}{y-2014}+\frac{1}{4}-\frac{\sqrt{z-2015}-1}{z-2015}=0\)
\(\Leftrightarrow\frac{x-2013-4\sqrt{x-2013}+4}{4\left(x-2013\right)}+\frac{y-2014-4\sqrt{y-2014}+4}{4\left(y-2014\right)}+\frac{z-2015-4\sqrt{z-2015}+4}{4\left(z-2015\right)}=0\)
\(\Leftrightarrow\left(\frac{\sqrt{x-2013}-2}{2\sqrt{x-2013}}\right)^2+\left(\frac{\sqrt{y-2014}-2}{2\sqrt{y-2014}}\right)^2+\left(\frac{\sqrt{z-2015}-2}{2\sqrt{z-2015}}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2013}-2=0\\\sqrt{y-2014}-2=0\\\sqrt{z-2015}-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)
b/ Trừ vế cho vế 2 pt ta được:
\(x^3-y^3=2\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy+2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2\right]=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Thay vào pt đầu:
\(x^3+1=2x\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow...\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}\)
Tìm x nguyên dương thỏa:
\(P< \frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{2015\sqrt{2016}+2016\sqrt{2015}}\)
Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại
Giải tổng quát nha :
\(\frac{1}{x\sqrt{x+1}+\left(x+1\right)\sqrt{x}}=\frac{1}{\sqrt{x\left(x+1\right)}\left(\sqrt{x}+\sqrt{x+1}\right)}=\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x\left(x+1\right)}}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\)
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
Tính giá trị biểu thức : \(S=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+.....+\frac{1}{2014\sqrt{2015}+2015\sqrt{2014}}\)
A=\(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)
1.Rút gọn A
2 tính A khi x=\(2016-2\sqrt{2015}\)
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}}\)
b. Khi \(x=2016-2\sqrt{2015}\Rightarrow A=\frac{2}{\sqrt{2016-2\sqrt{2015}}}\)
\(=\frac{2}{\sqrt{\left(\sqrt{2015}-1\right)^2}}=\frac{2}{\sqrt{2015}-1}\)