Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thành
Xem chi tiết
Nguyễn Ngọc Bảo Trâm
4 tháng 10 2016 lúc 20:22

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

Phan Bảo Ngọc
4 tháng 10 2016 lúc 20:16

hại não o_o

Kim Jisoo
16 tháng 12 2019 lúc 22:42

Mặc dù chưa tìm đc cách giải nhưng mk thấy vui vì bn là người đam mê học toán, học toán hết mk và trung thực. Bn sẽ thành công. Chúc bn học giỏi.

Khách vãng lai đã xóa
Trần Văn Thành
Xem chi tiết
KUDO SHINICHI
4 tháng 10 2016 lúc 16:26

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm

Dương Hoàng Minh
Xem chi tiết
Phạm Nhật An
23 tháng 6 2016 lúc 17:53

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

Phạm Nhật An
23 tháng 6 2016 lúc 17:56

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

Nguyễn Cao Bảo Ngân
23 tháng 6 2016 lúc 19:46

Nhìu thế!!!!batngo

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2017 lúc 17:03

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

⇒ NP và CD không song song với nhau.

Gọi giao điểm NP và CD là I.

I ∈ NP ⇒ I ∈ (MNP).

Mà I ∈ CD

Vậy I ∈ CD ∩ (MNP)

b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:

J ∈ AD ⇒ J ∈ (ACD)

J ∈ MI ⇒ J ∈ (MNP)

Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).

Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).

 

Vậy MJ = (ACD) ∩ (MNP).

Nguyễn Đình Mạnh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 19:40

Trong mp (ABC), nối MP kéo dài cắt BC kéo dài tại E

Trong mp (ACD), nối NP kéo dài cắt CD kéo dài tại F

\(\Rightarrow EF=\left(MNP\right)\cap\left(BCD\right)\)

Kuramajiva
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
6 tháng 6 2017 lúc 14:37

A B C D N M P K I
a) Gọi \(NP\cap CD=K\).
Do \(K\in NP\) nên \(K\in\left(MNP\right)\). Vậy K là giao điểm của CD và (MNP).
b) Do \(M\in AC\) nên \(M\in\left(MNP\right)\cap\left(ACD\right)\).
Và K là giao điểm của CD và (MNP) nên \(K\in\left(MNP\right)\cap\left(ACD\right)\).
Vì vậy MK là giao tuyến của (MNP) và (ACD).

Thùy Dương
Xem chi tiết