Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải
Xem chi tiết
witch roses
15 tháng 6 2015 lúc 18:52

S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4

=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)

=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)

=(k-1)k(k+1)(k+2)

=>4S+1=(k-1)k(k+1)(k+2)+1

do (k-1)k(k+1)(k+2) là tích 4 số tự nhiên liên tiếp mà tích 4 số tự nhiên liên tiếp +1 luôn là số chính phương ( cái này bạn tự chứng minh )

=> 4S+1 là số chính phương (đpcm)

Mạnh Lê
13 tháng 3 2017 lúc 22:39

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= 1/4. k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= 1/4. k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

Hiếu Phạm Chung
22 tháng 7 2017 lúc 20:30

bạn wicth roses sai r

4 ko = k+3-k-1

Thiên Hương
Xem chi tiết
BUI THI HOANG DIEP
4 tháng 9 2018 lúc 15:35

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= \(\frac{1}{4}\). k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= \(\frac{1}{4}\). k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

Hường Vĩnh Kha
Xem chi tiết
lê văn hải
Xem chi tiết
lê văn hải
11 tháng 11 2017 lúc 12:48

Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)

Chứng minh rằng 4S + 1 là số chính phương .

Ta có k(k+1)(k+2) = 41 k(k+1)(k+2).4

                             = 41 k(k+1)(k+2).[(k+3) – (k-1)]

                            = 41 k(k+1)(k+2)(k+3) - 41 k(k+1)(k+2)(k-1)

⇒S =41.1.2.3.4 -41.0.1.2.3 + 41.2.3.4.5 -41.1.2.3.4 +…+41 k(k+1)(k+2)(k+3) -41 k(k+1)(k+2)(k-1)

= 41 k(k+1)(k+2)(k+3)4S + 1

= k(k+1)(k+2)(k+3) + 1Theo kết quả bài 2

⇒ k(k+1)(k+2)(k+3) + 1 là số chính phương.

 

nguyễn thu ngà
Xem chi tiết
Yêu Isaac quá đi thui
Xem chi tiết
Lưu Hạ Vy
5 tháng 10 2016 lúc 15:49

Bài 1

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Bài 2 : 

Ta có k(k+1)(k+2) = 1/4 k(k+1)(k+2).4 = 1/4 k(k+1)(k+2).[(k+3) – (k-1)]

= 1/4 k(k+1)(k+2)(k+3) - 1/4 k(k+1)(k+2)(k-1)

→ S = 1/4.1.2.3.4 - 1/4.0.1.2.3 + 1/4.2.3.4.5 - 1/4.1.2.3.4 +...+ 1/4k(k+1)(k+2)(k+3) - 1/4k(k+1)(k+2)(k-1) = 1/4k(k+1)(k+2)(k+3)

4S + 1 = k(k+1)(k+2)(k+3) + 1

Theo kết quả bài 2 → k(k+1)(k+2)(k+3) + 1 là số chính phương.

Nguyễn Anh Duy
5 tháng 10 2016 lúc 15:47

chỉ mik tick một lần dc 3 cái

Nguyễn Anh Duy
5 tháng 10 2016 lúc 15:50

       Câu hỏi của Nguyễn Mai        

Aquamonst
Xem chi tiết
Đinh Đức Hùng
8 tháng 6 2017 lúc 5:49

S = 1.2.3 + 2.3.4 + 3.4.5 + ........ + k(k + 1)(k + 2)

4S = 1.2.3.4 + 2.3.4.4 + ...... + k(k + 1)(k + 2).4

= 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ..... + k(k + 1)(k + 2)[(k + 3) - (k - 1)]

= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + k(k + 1)(k + 2)(k + 3) - (k - 1)k(k + 1)(k + 2)

= k(k + 1)(k + 2)(k + 3) 

=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1

= [k(k + 3)][(k + 1)(k + 2)] + 1

= (k2 + 3k)(k2 + 3k + 2) + 1

= (k2 + 3k)2 + 2(k2 + 3k) + 1

= (k2 + 3k + 1)2 là số chính phương (đpcm)

Songoku Sky Fc11
8 tháng 6 2017 lúc 5:56

S=1.2.3+2.3.4+3.4.5+....+k(k+1)(k+2)

4s=1.2.3.4+2.3.4.4+....+k(k+1(k+2).4

=1.2.3.4+2.3.4.(5-1)+3.4.5(6-2)+.....k(k+1)(k+2) [(k+3)-(k-1)k(k+1)(k+2)

=k(k+1)(k+2)(k+3)

=>4s+1=k(k+1)(k+2)(k+3)+1

=

ST
8 tháng 6 2017 lúc 6:07

S = 1.2.3 + 2.3.4 +...+ k(k + 1)(k + 2)

4S = 1.2.3.(4 - 0) + 2.3.4.(5 - 1) +....+ k(k + 1)(k + 2)[(k + 3) - (k - 1)]

4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ k(k + 1)(k + 2)(k + 3) - (k - 1)k(k + 1)(k + 2)

4S = k(k + 1)(k + 2)(k + 3)           (*)

=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1 = (k2 + 3n)(k2 + 3n + 2) + 1

Đặt k2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2 = (k2 + 3n + 1)là số chính phương (đpcm)

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 8 2023 lúc 10:00

4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4=

=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]=

=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-(k-1)k(k+1)(k+2)+k(k+1)(k+2)(k+3)=

=k(k+1)(k+2)(k+3)=k(k+3)(k+1)(k+2)=

=(k2+3k)(k2+3k+2)=(k2+3k)2+2(k2+3k)

=> 4S+1=(k2+3k)2+2(k2+3k)+1=[(k2+3k)+1]2

 

Me
Xem chi tiết
Trần Anh
23 tháng 4 2016 lúc 21:13

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot4\)

\(1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot\left[\left(k+3\right)-\left(k-1\right)\right]\)= 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + k*(k+1)*(k+2)*(k+3) - (k-1)*k*(k+1)*(k+2)

=k*(k+1)*(k+2)*(k+3)