Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
Tìm số tự nhiên n để các só 9n + 24 và 3n + 4 là các số nguyên tố cùng nhau
Tìm số tự nhiên n để 4n+3 và 2n+3 là số nguyên tố cùng nhau.
gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d
ta có 2n + 3 chia hết cho d
=> 2( 2n + 3) chia hết cho d
=> 4n + 6 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d
=> 4n + 6 - 4n - 3 chia hết cho d
=> 3 chia hết cho d
=> d = { 1,3}
để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3
=> n = 1,... t=B tự tìm nhé
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Chứng minh với mọi số tự nhiên n , các số sau là hai số nguyên tố cùng nhau:
1) 7n + 10 và 5n + 7.
2) 2n + 3 và 4n + 8.
a) Đề:..........
Gọi d là ƯC của 7n + 10; 5n + 7
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(7n+10\right)⋮d\\7.\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
b) Đề:............
Gọi d là ƯC của 2n + 3; 4n + 8
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)
=> d = {1; 2}
Mà 2n + 3 là số lẻ (không thỏa mãn)
=> 1 chia hết cho d
Vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.
Cho m và n là các số tự nhiên, m là số tự nhiên lẻ. Chứng tỏ rằng m và mn+8 là hai số nguyên tố cùng nhau.
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...