cho \(\Delta\) ABC có góc B - góc C= 20 độ. Lấy điểm E trên cạnh AC sao cho góc ABE= góc AEB. Tính góc EBC
cho tam giác ABC có góc B - góc C = 20 độ. Lấy điểm E trên cạnh AC sao cho góc ABE= góc AEB. tính góc EBC
a, IE vuông góc với AC.
b, Góc ABE= góc AEB.
c, Tính số đo góc BEC.
d, Tia EY cắt AB tại K. Tính số đo góc ABE
Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm E sao cho góc EBC= 2 lần góc ABE. Trên tia BE lấy điểm M sao cho EM=BC. ãy so sánh các góc MBC và góc BMC.
cho tam giác ABC có góc BAC bằng 90 độ, góc ABC bằng 20 độ. Lấy điểm E thuộc cạnh AC, điểm F thuộc cạnh AB sao cho góc ABE bằng 10 độ, góc ACF bằng 30 độ. Tính góc CFE
fhdgfffffffffffff
kol
cho tam giác ABC có góc A bằng 60 độ,góc C bằng 50 độ.Trên cạnh AB lấy D,Trên cạnh AC lấy E sao cho góc DCB bằng 40 độ,góc EBC=50 độ
a)Chứng minh CD=BC
b)tính góc DEB
Hic giúp mình với: cho tam giác ABC có B=75 độ; C=45 độ. Vẽ đường thẳng d là đường trung trực của đoạn thẳng BC. Gọi E là điểm thuộc d và cùng nửa mặt phẳng bờ BC đối với A sao cho góc EBC = 30 độ. a) CM tam giác BEC cân tại E. b) CM góc BAC = góc ABE + góc ACE. c) tính góc AEB
cho tam giác ABC có góc A=80,góc C=40 trên cạnh AC lấy điểm E sao cho CBE=10
a,tính góc AEC
b,chứng minh góc AEB= gócABE
Cho tam giác ABC cân tại A(AB=AC) với góc BAC=20 độ Trên cạnh AC lấy điểm D sao cho góc DBC= 50 độ. Trên cạnh AB lấy điểm E sao cho góc ECB=60 độ. Tính số đo góc DEC
a) Do DF//BC⇒ˆAFD=ˆABCDF//BC⇒AFD^=ABC^ (hai góc ở vị trí đồng vị)
ˆADF=ˆACBADF^=ACB^ (hai góc ở vị trí đồng vị)
mà ΔABCΔABC cân đỉnh A nên ˆABC=ˆACBABC^=ACB^
⇒ˆAFD=ˆADF⇒ΔAFD⇒AFD^=ADF^⇒ΔAFD cân đỉnh A
⇒AF=AD⇒AF=AD
Xét ΔAFCΔAFC và ΔADBΔADB có:
AF=ADAF=AD (cmt)
ˆAA^ chung
AC=ABAC=AB (do ΔABCΔABC cân đỉnh A)
⇒ΔAFC=ΔADB⇒ΔAFC=ΔADB (c.g.c) (đpcm)
b) ⇒ˆACF=ˆABD⇒ACF^=ABD^ (hai góc tương ứng)
⇒ˆABC−ˆABD=ˆACB−ˆACF⇒ABC^−ABD^=ACB^−ACF^
⇒ˆDBC=ˆFCB⇒DBC^=FCB^
⇒ΔOBC⇒ΔOBC cân đỉnh O mà ˆCBD=60oCBD^=60o (giả thiết)
⇒ΔOBC⇒ΔOBC đều
c) Xét ΔABCΔABC cân đỉnh A có:
ˆABC=180o−ˆA2=80oABC^=180o−A^2=80o
Áp dụng tính chất tổng ba góc trong 1 tam giác vào ΔBCEΔBCE ta có:
ˆBEC+ˆBCE+ˆEBC=180oBEC^+BCE^+EBC^=180o
⇒ˆBEC=180o−(ˆBCE+ˆEBC)⇒BEC^=180o−(BCE^+EBC^)
=180o−(50o+80o)=50o=180o−(50o+80o)=50o
⇒ˆBEC=ˆBCE=50o⇒ΔBCE⇒BEC^=BCE^=50o⇒ΔBCE cân đỉnh B
⇒BE=BC⇒BE=BC mà BO=BCBO=BC (do ΔOBCΔOBC đều)
⇒BE=BO⇒ΔBEO⇒BE=BO⇒ΔBEO cân đỉnh B
⇒ˆEOB=180o−ˆEBO2=180o−20o2=80o⇒EOB^=180o−EBO^2=180o−20o2=80o
(ˆEBO=ˆEBC−ˆOBC)=80o−60o=20o(EBO^=EBC^−OBC^)=80o−60o=20o
d) Xét ΔFBCΔFBC có: ˆBFC=180o−ˆFBC−ˆFCBBFC^=180o−FBC^−FCB^
=180o−80o−60o=40o=180o−80o−60o=40o
ˆEOF=180o−ˆEOB−ˆBOC=180o−80o−60o=40oEOF^=180o−EOB^−BOC^=180o−80o−60o=40o
⇒ˆEFO=ˆEOF=40o⇒ΔEFO⇒EFO^=EOF^=40o⇒ΔEFO cân đỉnh E ⇒EF=EO⇒EF=EO (1)
Ta có: ΔODFΔODF có: ˆFOD=ˆBOC=60oFOD^=BOC^=60o (đối đỉnh)
ˆDFO=ˆOBC=60oDFO^=OBC^=60o (hai góc ở vị trí so le trong)
⇒ΔODF⇒ΔODF đều ⇒DF=DO⇒DF=DO (2)
Và DEDE chung (3)
Từ (1), (2) và (3) suy ra ΔEFD=ΔEODΔEFD=ΔEOD (c.c.c) (đpcm)
Bài này là bài của học sinh giỏi lớp 7 nên không dễ mà giải được đâu
ơ em đang hỏi góc DEC bằng bao nhiêu độ mà