Tính (-2) (-3/2) (-4/3)......(-2010/2009) (-2011/2010)
tính tổng các số sau: -2012; -2011; -2010; -2009;...; -1; 0; 1; 2; 3; 4;...;2009; 2010; 2011; 2012
Kết quả : 0
Giải:
(-2012+2012)+(-2011+2011)+(-2010+2010)+(-2009+2009)+................+(-3+3)+(-2+2)+(-1+1)+0=0
Tổng các số trên là 0
Nhóm thành các nhóm gồm các số đối là được
tính các dãy số sau:
-1-2+3+4-5-6+7+8-.....-2009-2010+2011
-1-2+3-4-5+6+....-2009+2010-2011
Kết quả của phép tính : (-2)(-3/2)(-4/3)...(-2010/2009)(-2011/2010)
\(\left(-2\right).\left(-\frac{3}{2}\right).\left(-\frac{4}{3}\right)....\left(-\frac{2010}{2009}\right).\left(-\frac{2011}{2010}\right)=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2010\right).\left(-2011\right)}{2.3.4....2009.2010}=2011\)
Kết quả của phép tính : (-2) (-3/2) (-4/3) ......(-2010/2009) (-2011/2010)
Kết quả là bằng 2011 nhé!
Mình làm rồi.
TÍNH TỔNG : 1/1 : 2 + 1/2 : 3 + 1/3 : 4 + .........+ 1/2009:2010 + 1/2010 : 2011
Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.
Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)
= \(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)
= \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
= \(1-\frac{1}{2011}\)
= \(\frac{2010}{2011}\)
1. Kết quả của phép tính:
(-2) . (-3/2) . (-4/3)........(-2010/2009) . (-2011/2010)
ai đó giúp mk với mk xin chân thành cảm ơn! a=(2010+2010/2+2009/3+2008/4+...+1/2011/ 1/2+1/3+...+1/2011) / (1/2+1/3+1/4+1/5+...+1/2009+1/2010+1/2011)
Cho A=1/2+1/3+1/4+...+1/2011+1/2012
B=2011/1+2010/2+2009/3+...+2/2010+1/2011
Tính A/B
Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)
B=2012.A
=>A/B=1/2012
Tính \(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)
=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)
=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)
=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)
ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^
dung r bn oi
con co cau p=1/2+1/3+...+1/2011+1/2012