Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ѕнєу
Xem chi tiết
Lê Thị Thục Hiền
16 tháng 6 2021 lúc 11:54

Bài 2:

Với x,y,z,t là số tự nhiên khác 0

Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)

=> M không là số tự nhiên.

Bài 1:

Ta có:

\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\) 

\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\) 

\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\) 

\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\) 

\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)

ho huu
16 tháng 6 2021 lúc 12:17

sai rồi kìa \(\frac{A}{B}\)chớ không phải \(\frac{B}{A}\)

bằng \(\frac{1}{2009}\)mới dúng

Khách vãng lai đã xóa
Bui Thi Thu Phuong
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Đinh Thanh Nhàn
14 tháng 3 2016 lúc 22:49

x/(x+y+z)>x/(x+y+z+t)

tương tự cho 3 cái còn lại

=>M>x/(x+y+z+t)+y/(x+y+z+t)+z/(x+y+z+t)+t/(x+y+z+t)

=>m>(x+y+z+t)/(x+y+z+t)

=>M>1

Đinh Thanh Nhàn
14 tháng 3 2016 lúc 23:01

x/(x+y+z)<1=>(x+t)/(x+y+t+z)>x/(x+y+z)

tương tự => M<2(x+y+z+t)/(x+y+z+t)

=> M<2

ta có 2>M>1=> m ko phải là số tự nhiên

Đỗ Trung Kiên
18 tháng 3 2017 lúc 19:45

tại sao x/(x+y+z)<1 thì bạn có thể suy ra (x+t)/(x+y+t+z)>x/(x+y+z)

mình thấy (x+t)/(x+y+z+t)cũng lớn hơn 1 cơ mà ( thấy vô lý kiểu gì ý)

09 -Trần Tấn Đạt 7A4
Xem chi tiết
Zy Zy
Xem chi tiết
Tiến Dũng Trương
11 tháng 4 2017 lúc 5:31

de bi sai neu x=y=x=1 thi M=1

Phan Nghĩa
10 tháng 7 2020 lúc 8:19

Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

\(\frac{y}{y+z}>\frac{y}{x+y+z}\)

\(\frac{z}{z+x}>\frac{z}{x+y+z}\)

Cộng theo vế , suy ra : \(M=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(< =>M>\frac{x+y+z}{x+y+z}=1\)(*)

Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

\(\frac{y}{y+z}< \frac{y+x}{y+z+x}\)

\(\frac{z}{z+x}< \frac{z+y}{z+x+y}\)

Cộng theo vế , suy ra : \(M=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{y+x}{x+y+z}+\frac{z+y}{x+y+z}\)

\(< =>M< \frac{2\left(x+y+z\right)}{x+y+z}=2\)(**)

Từ (*) và (**) \(< =>1< M< 2\)

Từ đó ta có điều phải chứng minh 

Khách vãng lai đã xóa
Cù Thúy Hiền
Xem chi tiết
Đinh Đức Hùng
16 tháng 3 2017 lúc 12:11

\(x;y;z;t\in N\)nên ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

=> M có giá trị không phải là số tự nhiên

Phan Thanh Tịnh
16 tháng 3 2017 lúc 7:03

Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)

Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2 

Vậy M không phải là số tự nhiên

Le Phuc Thuan
16 tháng 3 2017 lúc 17:12

Đinh Đức Hùng giải SAI nha 

như bạn Phan Thanh Tịnh mới đúng

Ngô Văn Dũng
Xem chi tiết
đường hà linh
29 tháng 1 2021 lúc 14:54

1<M<2

Khách vãng lai đã xóa
Đỗ Yến Nhi
Xem chi tiết
hêllu the world
Xem chi tiết
Phùng Minh Quân
13 tháng 2 2018 lúc 12:50

Ta có :

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}\)

\(+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Suy ra \(M>1\)\(\left(1\right)\)

Lại có :

\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}\)\(+\frac{t+y}{x+y+z+t}=\frac{x+t+y+z+z+x+t+y}{x+y+z+t}=\frac{2x+2y+2z+2t}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Suy ra \(M< 2\)\(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)

 Vậy \(M\) không là số tự nhiên 

hêllu the world
13 tháng 2 2018 lúc 12:34

à thôi biết làm rồi ..

Thanh Hà
13 tháng 2 2018 lúc 12:41

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\)\(M>\frac{x+y+z+t}{x+y+z+t}=1\)

\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vif 1<M<2

Vậy M không phải là một số tự nhiên

❥一ɗσηηυт︵✿
Xem chi tiết
Khánh Ngọc
24 tháng 6 2020 lúc 21:05

Vì x, y, z, t thuộc N* nên :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)

Từ (1) (2) (3) và (4)

\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\) không phải là số tự nhiên

Khách vãng lai đã xóa
Khánh Ngọc
24 tháng 6 2020 lúc 21:07

Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm

Khách vãng lai đã xóa