Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bach Mai Phuong
Xem chi tiết
Lê Đức Trung
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Nguyễn Huy Tú
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Khách vãng lai đã xóa
Phương Nora kute
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 8 2021 lúc 7:30

1) \(A=x^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=0\)

2) \(B=2x^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)

\(ĐTXR\Leftrightarrow x=0\)

3) \(\left(2x-3\right)^2-5\ge-5\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)

Nguyễn Thùy Linh
Xem chi tiết
Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 12:48

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

Hoàng Quý Lương
17 tháng 4 2020 lúc 21:06

eeeee

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
17 tháng 4 2020 lúc 21:07

e cái gì là em bé à

Khách vãng lai đã xóa
Death
Xem chi tiết
kudo shinichi
Xem chi tiết
Namikaze Minato
8 tháng 5 2018 lúc 15:17

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x\right)^2-1+2017\)

\(=\left(2x^2-3x\right)^2+2016\ge2016\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Namikaze Minato
8 tháng 5 2018 lúc 15:21

ai thấy mình làm đúng thì k cho mình nha!

nguyễn thị lan hương
8 tháng 5 2018 lúc 15:21

A=\(\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

ĐẶT \(2x^2-3x=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)+2017\)

\(\Leftrightarrow t^2-1+2017\)

\(\Leftrightarrow t^2+2016\ge2016\left(do.t^2\ge0\right)\)

DẤU ''='' XẢY RA KHI VÀ CHỈ KHI \(t^2=0\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=0\end{cases}}\)

VẬY GTNN CỦA A LÀ 2016 TẠI X=0 HOẶC X=3/2