Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Tuyên
Xem chi tiết
Nguyễn Huy Tú
23 tháng 12 2016 lúc 13:06

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Sáng
23 tháng 12 2016 lúc 13:06

Ta có : a/b = c/d suy ra a/c = b/d.

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Suy ra:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Sherlockichi Kudoyle
Xem chi tiết
Hoàng Phúc
11 tháng 7 2016 lúc 9:16

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)

Vậy.......

tèn tén ten
Xem chi tiết
Nguyễn Anh Duy
28 tháng 10 2016 lúc 22:44

Ta có:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a^2+b^2+a.b}{c^2+d^2+c.d}=\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)

\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{a.b}{c.d}\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}\)

\(\Rightarrow\frac{ca+cb}{ca+ad}=\frac{bc+bd}{ad+bd}=\frac{ca+bd}{ca-bd}=1\)

\(\Rightarrow ca+cb=ca+ad\)

\(\Rightarrow cb=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Nguyễn Thị Ngọc Diệp
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
22 tháng 9 2015 lúc 15:41

Ta có :a/b = c/d suy ra a/c = b/d

Áp dụng tích chất dãy tính chất tỉ số bằng nhau

a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d

Nguyễn Nhật Hạ
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
The Last Legend
Xem chi tiết

A/B=C/D <=>A/C=B/D

THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ

A/C=B/D=A+B/C+D=A-B/C-D

=>A+B/C+D=A-B/C-D

=>A+B/A-B=C+D/C-D =>ĐPCM

The Last Legend
15 tháng 6 2018 lúc 10:14

giải cả ra nhé

Dương
15 tháng 6 2018 lúc 10:22

bạn tham khảo :

Câu hỏi của Kudo Shinichi - Toán lớp 7 - Học toán với OnlineMath

thiên thiên
Xem chi tiết
Sherlockichi Kazukosho
22 tháng 9 2016 lúc 19:58

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Lục Kim Duy
Xem chi tiết
Lê Văn Đạt2
27 tháng 12 2016 lúc 20:30

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

Nguyễn Thị Thanh Lam
27 tháng 12 2016 lúc 20:37

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

minhduc
1 tháng 10 2017 lúc 8:52

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

   \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

Từ \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)