CHO TAM GIÁC ABC CÓ B=C TIA PHÂN GIÁC CỦA B CẮT AC Ở D TIA PHÂN GIÁC CỦA C CẮT AB Ở E SO SÁNH BD VÀ CE
CHO TAM GIÁC ABC CÓ B=C TIA PHÂN GIÁC CỦA B CẮT AC Ở D TIA PHÂN GIÁC CỦA C CẮT AB Ở E SO SÁNH BD VÀ CE
Cho tam giác ABC có góc B=C. Tia phân giác của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. So sánh độ dài các đoạn thẳng BD và CE.
bằng nhau
ai tích mình tích lại
lai minh lại nha
Xét t/g ABC có \(\widehat{ABC}=\widehat{ACB}\)
=> t/g ABC cân tại A.
=> AB = AC (t/c).
Có \(\widehat{ABC}=\widehat{ACB}\)
=> \(\dfrac{\widehat{ABC}}{2}=\dfrac{\widehat{ACB}}{2}\)
=> \(\widehat{ABD}=\widehat{ACE}\) (do BD, CE là pg góc B vafC)
Xét t/g ABD và t/g ACE có
\(\widehat{A}\) :chung
AB = AC (cmt)
\(\widehat{ABD}=\widehat{ACE}\)
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
Cho tam giác ABC có B=C . Tia phân giác góc B cắt AC ở D , tia phân giác góc C cắt AB ở E . so sánh độ dài BD và CE
HELP MIK CẦN GẤP!!!!!!!
: Cho ABC cân tại A. Tia phân giác của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. So sánh độ dài các đoạn thẳng BD và CE.
cho tam giác ABC có góc B= góc C. Tia phân giác của góc B cắt AC tại D. Tia phân giác của góc C cắt AB tại E. So sánh độ dài đoạn thẳng BD và CE
=> (do BD, CE là pg góc B và C)
Xét t/g ABD và t/g ACE có
:chung
AB = AC (cmt)
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
Cho 1 tam giác ABC có góc B = góc C tia phân giác của góc B cắt AC Tại D tia phân giác của góc C cắt AB tại E so sánh độ dài đoạn thẳng BD và CE
Cho tam giác ABC có góc B bằng góc C. Tia phân giác của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. Chứng tỏ BD = CE.
Cho tam giác ABC có góc B = góc C. Tia phân giác của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. Gọi K là gia điểm của CE và BD. Chứng minh:
a) CE = BD
b) Tam giác EBK = Tam giác DCK
a)Vì \(\widehat{B}\)=\(\widehat{C}\)nên tam giác ABC cân tại A => AB=AC (1). Mặt khác, \(\widehat{B_1}\)=\(\frac{1}{2}\)\(\widehat{ABC}\), \(\widehat{C_1}\)=\(\frac{1}{2}\)\(\widehat{ACB}\)=> \(\widehat{B_1}\)= \(\widehat{C_1}\)(2).
Từ (1),(2) và \(\widehat{A}\) chung=> tam giác ABD=ACE=> BD=CE; AE=AD ; \(\widehat{E_1}\)=\(\widehat{D_1}\)
b) Vì \(\widehat{E_1}\)=\(\widehat{D_1}\)=>\(\widehat{E_2}\)=\(\widehat{D_2}\)(3); từ (1) và AE=AD => EB=DC(4)
Từ (2),(3),(4) => tam giác EBK=DCK(g.c.g)