Cho:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
CMR: A > 50
Cho A = 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2^{100}-1}\)
CMR: A > 50
Cho:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2^{100}-1}\)
CMR: A>50
Tham khảo tại link sau : olm.vn/hoi-dap/question/687403.html
CMR: A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}>50\)
Thêm bớt ở A phân số 1/2100
\(A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}\right)+\frac{1}{2^{100}}\)
\(\Rightarrow A\ge1+\frac{1}{2}+\frac{2}{2^2}+\frac{4}{2^3}+\frac{8}{2^4}+...+\frac{2^{99}}{2^{100}}-\frac{1}{2^{100}}=1+\frac{1}{2}+...+\frac{1}{2}-\frac{1}{2^{100}}\)( 100 ps 1/2)\(\Rightarrow A>1+50-\frac{1}{2^{100}}>50\)
=> ĐPCM
1.
Cho \(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2^{100}-1}\)
CMR : \(P>50\)
2.
So sánh : \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)và \(B=2\)
CMR:
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2019\times2020}< 1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{3}{4}\)
\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 2\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}...+\frac{1}{100!}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow C< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow C< 2-\frac{1}{100}\)
\(\Leftrightarrow C< 2\left(đpcm\right)\)
Cmr:\(50< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100-1}}< 100\)
Gọi biểu thức trên là A.
Chứng minh A > 50
\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)
\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)
\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)
\(< =>A>\frac{100}{2}=50\)
Chứng minh A<100
\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)
\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)
\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)
\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)
ta có : 1+1/2+1/3+....+1/2^100-1
= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2
= 2x(1/2+1/3+1/4+...+1/2^100)
=.................... làm đến đây mk tịt
CMR \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{4}{9},A>\frac{1}{4}\)
CMR: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{173}{100}\)
Ta có: \(55+5\)1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 +.....+ 1/50^2 = 1/1^2 + 1/2^2 + (1/3^2 + 1/4^2 +....+ 1/50^2 )
< 1 + 1/4 + (1/2*3 + 1/3*4 +...+1/49*50) = 1 + 1/4 + (1/2 - 1/3 + 1/3 - 1/4+...+1/49 - 1/50 )
= 1,73 = 173/100 (dpcm)
CMR:
a,\(100\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+........+\frac{99}{100}\)
\(VP=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(VP=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
\(VP=\frac{2}{2}-\frac{1}{2}+\frac{3}{3}-\frac{1}{3}+\frac{4}{4}-\frac{1}{4}+...+\frac{100}{100}-\frac{1}{100}\)
\(VP=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}\)
\(VP=100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=VT\) ( đpcm )
Mk nghĩ \(VT=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\) bn xem lại đề có nhầm ko
Chúc bạn học tốt ~