Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
viston
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 10 2016 lúc 8:11

Trước hết ta chứng minh nếu y là số chẵn thì y2 cũng là số chẵn.
Thật vậy, đặt y = 2n thì \(y^2=4n^2\) luôn là một số chẵn.

Với mọi x là số tự nhiên thì 4x luôn là một số chẵn, vậy y2 phải là số chẵn. Áp dụng điều trên ta được y cũng là một số chẵn.

Đặt y = 2k (k thuộc N*) . Khi đó \(4x+y^2=4x+\left(2k\right)^2=4\left(x+k^2\right)\) luôn chia hết cho 4. Trong khi đó vế phải không chia hết cho 4 => Mâu thuẫn.

Vậy không tồn tại giá trị x,y thỏa mãn đề bài.

Ngyuễn Lê Trình
Xem chi tiết
Athena
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết
Triệu Việt Bách
18 tháng 3 2018 lúc 21:49

làm được thì đã ghi rồi

Trần Văn Giang
Xem chi tiết
Chung Nguyễn Thành
Xem chi tiết
Sherry
28 tháng 12 2017 lúc 20:56

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

Le Thi Phuong Anh
14 tháng 5 2020 lúc 14:20

giá trị lớn nhất là 2017

Khách vãng lai đã xóa
Yurii
Xem chi tiết
Đào Thị Lê Na
Xem chi tiết
I love BTS
Xem chi tiết