Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN MINH NGỌC
Xem chi tiết
Hà Anh
Xem chi tiết
Thắng Nguyễn
30 tháng 4 2016 lúc 19:35

để B đạt GTLN

=>4n-10 bé nhất

vì 4n-10 là mẫu của B nên 4n-10\(\ne0\)

=>4n-10=2

<=>4n=2+10=12

=>n=12:4=3

vậy Bmax=\(\frac{10-3}{4.3-10}=\frac{7}{12.10}=\frac{7}{2}\)khi n=3
 

Nguyễn Thị Dịu
Xem chi tiết
Akai Haruma
31 tháng 5 lúc 0:45

Lời giải:

$B=\frac{10n-3}{4n-10}$

$2B=\frac{20n-6}{4n-10}=\frac{5(4n-10)+44}{4n-10}=5+\frac{44}{4n-10}$

$B=\frac{5}{2}+\frac{22}{4n-10}=\frac{5}{2}+\frac{11}{2n-5}$
Để $B$ min thì $\frac{11}{2n-5}$ min

Điều này xảy ra khi $2n-5$ là số âm lớn nhất.

Với $n\in\mathbb{N}$, $2n-5$ nhận giá trị âm lớn nhất bằng -1.

$\Leftrightarrow n=4$

Khi đó, $B_{\min}=\frac{5}{2}+\frac{11}{-1}=\frac{-17}{2}$

Võ Xuân Thắng
Xem chi tiết
Phan Thiên Lâm Hương
Xem chi tiết
Bùi Thế Hào
18 tháng 4 2017 lúc 17:02

\(B=\frac{10n-3}{4n-10}\)

=> \(2B=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5\left(4n-10\right)+44}{4n-10}\)

=> \(2B=5+\frac{44}{4n-10}=5+\frac{22}{2n-5}\)

Để B đạt lớn nhất => 2B đạt lớn nhất => \(\frac{22}{2n-5}\) đạt giá trị lớn nhất

=> 2n-5 đạt giá trị dương nhỏ nhất => 2n-5=1 => n=3

=> \(2B=5+\frac{22}{1}=27\)

=> Giá trị lớn nhất của B là: 27:2=13,5

ĐS: n=3; Bmax=13,5

Cristiano Ronaldo
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 13:14

Answer:

\(B=\frac{10n-3}{4n-10}\)

\(=\frac{5.\left(2n-5\right)+22}{2.\left(n-5\right)}\)

\(=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}\)

\(=\frac{5}{2}+\frac{11}{2n-5}\)

Mà để B đạt giá trị lớn nhất thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất

Mà ta có: 11 > 0 thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất khi: 

2n - 5 > 0 và đạt giá trị nhỏ nhất khi: \(2n-5=1\Rightarrow2n=6\Rightarrow n=3\)

Tương tự: Giá trị lớn nhất là: \(11+\frac{5}{2}=13,5\)

Vậy giá trị lớn nhất của biểu thức \(B=13,5\) khi \(n=3\)

Khách vãng lai đã xóa
Lê Quang Nguyên
Xem chi tiết
lưu thi linh
Xem chi tiết
nguyễn xuân lộc
Xem chi tiết