\(y=\frac{1}{91}+\frac{1}{105}+\frac{1}{120}+\frac{1}{136}+\frac{1}{153}\)
1) Cho
\(B=2\frac{1}{315}.\frac{1}{651}-\frac{1}{105}.3\frac{650}{651}-\frac{4}{315.651}+\frac{1}{105}\)
Đặt
\(x=\frac{1}{315};y=\frac{1}{651};z=\frac{1}{105}\)
Hãy tính giá trị của B
\(2\frac{1}{315}.\frac{1}{651}-\frac{1}{105}.3\frac{650}{651}-\frac{4}{315.651}+\frac{4}{105}\)
\(=\left(2+\frac{1}{315}\right).\frac{1}{651}-\frac{1}{105}.\left(3+\frac{650}{651}\right)-\frac{4}{315.651}+\frac{4}{105}\)
\(=2.\frac{1}{651}+\frac{1}{315}.\frac{1}{651}-\frac{1}{105}.3+\frac{1}{105}.\frac{650}{651}-\frac{4}{315.651}+\frac{4}{105}\)
\(=\frac{2}{651}+\frac{1}{315.651}-\frac{3}{105}-\frac{650}{105.651}-\frac{4}{315.651}+\frac{4}{105}\)
\(=\frac{2}{615}+\left(\frac{1}{315.651}-\frac{4}{315.651}\right)+\left(\frac{-3}{105}+\frac{4}{105}\right)-\frac{650}{105.651}\)
\(=\frac{2}{651}-\frac{3}{315.651}+\frac{1}{105}-\frac{650}{105.651}\)
\(=\left(\frac{2}{651}+\frac{1}{105}\right)-\frac{650}{105.651}-\frac{3}{315.651}\)
\(=\left(\frac{2.105}{105.651}+\frac{651}{105.651}\right)-\frac{650}{105.651}-\frac{3}{315.651}\)
\(=\frac{211}{105.651}-\frac{3}{315.651}\)
\(=\frac{1}{651}.\left(\frac{211}{105}-\frac{3}{315}\right)\)
\(=\frac{1}{651}.\left(\frac{633}{315}-\frac{3}{315}\right)\)
\(=\frac{1}{651}.2\)
\(=\frac{2}{651}\)
BẠN BÀO GIÚP MÌNH VỚI
Cho M= \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+....+\frac{1}{105}+\frac{1}{120}\)
Chứng tỏ \(\frac{1}{3}< M< \frac{1}{2}\)
CÁC BẠN GIẢI ĐẦY ĐỦ HỘ MÌNH NHÉ
M=1/10 + 1/15 + 1/21 +....+ 1/120
M=2/20 +2/30+2/42+....+2/240
M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16
M=2.(1/4.5 +......+ 1/15.16)
M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)
M=2.(1/4 - 1/16)
M=2.(4/16 - 1/16)
M=2. 3/16
M=6/16=3/8
Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M
Có 1/2 = 4/8>3/8 =>1/2 >M
=> 1/3 < M < 1/2
Tính nhanh:
a)\(\frac{5}{30}+\frac{15}{90}+\frac{25}{150}+\frac{35}{210}+\frac{45}{270}\)
b)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
c)\(\frac{1}{15}+\frac{4}{30}+\frac{2}{45}+\frac{16}{60}+\frac{25}{75}+\frac{36}{90}+\frac{49}{105}+\frac{64}{120}+\frac{81}{135}\)
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
chịu,khó quá,nhất là câu c ý
Tính nhanh
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+\frac{25}{75}+\frac{36}{90}+\frac{49}{105}+\frac{64}{120}+\frac{81}{135}\)
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
Cho M=\(\frac{1}{10}\)+\(\frac{1}{15}\)+\(\frac{1}{21}\)+\(\frac{1}{28}\)+...........+\(\frac{1}{105}\)+\(\frac{1}{120}\). Chứng tỏ \(\frac{1}{3}\)<M<\(\frac{1}{2}\)
Chứng minh rằng\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+..+\frac{1}{2015!}
Đặt A = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2015!}\)
A < \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2014.2015}\)
A < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2014}-\frac{1}{2015}\)
A < \(2-\frac{1}{2015}\)< 2 < \(2\left(\frac{135^2+136}{136^2-135}\right)\)
=> A < \(2\left(\frac{135^2+136}{136^2-135}\right)\)(Đpcm)
Giải phương trình sau
a,\(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
b,\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
c,\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
a, \(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
\(2\left(\frac{11x+4}{12}\right)-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-\frac{24}{12}+\frac{2x}{12}=0\)
\(\frac{44x+8-24+2x}{12}=\frac{46x-16}{12}=0\)
\(\Leftrightarrow46x-16=0\)
\(\Leftrightarrow46x=16\Rightarrow x=\frac{8}{23}\)
Vậy nghiệm của pt là x=8/23
k mk
Giải phương trình sau
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200