Chứng minh rằng: Nếu x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+c) Thì a/(x+2y+z)=b/(2x+y+z)=c/(4x-4y+z)
Chứng minh rằng nếu x/ a + 2b + c = y/ 2a + b - c = z/ 4a - 4b +c thì a/x + 2y + z = b/ 2x + y -z = c / 4x -4y +z
chứng minh : nếu x/a+2b+c=y/2a+b-c=z/4a-4b+c
thì a/x+2y+z=b/2x+y-z=c/4x-4y+z
Chứng minh nếu x / a + 2b + c = y / 2a + b - c = z / 4a -4b + c thì a / x + 2y + z = b / 2x + y -z = c / 4x - 4y + z
Chứng minh rằng: Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}thì\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
cho x/(a+2b-c)=y/(2a+b+c)=z/(4b+c-4a) . Chứng minh a/x+2y-z = b/2x+y+z = c/4y+z-4x
Chứng minh rằng:
Nếu x/a+2b+c = y/2a+b-c = z/4a-4b+c thì
a/x+2y+z = b/2x+y-z = c/4x-4y+z ( với x, y, z khác 0 và các mẫu đều khác 0 )
Giúp mình nhanh nhé
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Chứng minh rằng nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)
Giải:
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9
Cho x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+2c)
Chứng minh a/(x+2y-z)=b/(2x+y-z)=c/(4x-4y+z)
Chứng minh rằng:
Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)