so sánh\(\frac{3^7}{3^5}\) và \(\frac{3^5+1}{3^2+1}\)
Chào mọi người , làm phiền mọi người gợi ý giải 3 bài toán này giúp mình với
1/ So sánh A và B
\(A=\frac{6-8^{40}}{5^{20}+1}B=\frac{3-5^{40}}{2-7^{20}}\)
2/ So sánh A và B
\(A=\frac{3-4^{20}}{5-7^{20}}\)\(B=\frac{6+3^{50}}{2-7^{50}}\)
3/ So sánh A và B
\(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+..+\frac{1}{18.19}B=\frac{9}{19}\)
Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .
an nguyen cho tôi một chút thời gian để làm bài 3 nhé(chiều tối tôi sẽ có đáp án,vì giờ tôi bận nhé :) )
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
so sánh\(\frac{3^7}{3^5}\) và \(\frac{3^5+1}{3^2+1}\)
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
So sánh:
a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\) và \(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)
b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)và \(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
Hãy so sánh:
a) A= \(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)với 3.
b) A= \(\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}\)và B=\(\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}\)
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
b) \(A=\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}=5^{11}\)
bn rút gọn là dc
\(B=\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}=7^{11}\)
\(A=5^{11},B=7^{11}\)
\(\Rightarrow7^{11}>5^{11}\Rightarrow B>A\)
hk tốt #
So sánh A và B nếu
\(A=\frac{-1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4}\)
\(B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
So sánh :
\(A=\frac{1+7+7^2+.......+7^9}{1+7+7^2+.......+7^8}\)và \(B=\frac{1+5^2+5^3+......+5^9}{1+5^2+5^3+......+5^8}\)
A = 1 + 7^9/1+7+7^2+....+7^8
= 1 + 7^9-1/1+7+....+7^8 + 1/1+7+....+1/7^8
= 1 + 7-1 + 1/1+7+....+7^8
= 7 + 1/1+7+....+7^8
Tương tự : B = 5 + 1/1+5+....+5^8
Vì 1/1+5+.....+5^8 < 1 => B < 5+1 = 6
Mà A > 6 => A > B
k mk nha
SO SÁNH:
A =\(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}\)
VÀ B = \(\frac{5^{10}}{1+5+5^2+5^3+...+5^9}\)
ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)
= \(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)
tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)
Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)< \(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)
=> A > B