Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Nữ Linh Đan
Xem chi tiết
Đinh Quang Minh
Xem chi tiết
Không Tên
23 tháng 10 2017 lúc 19:36

A = \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

2A = 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)

2A + A =( 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

3A = 1 \(-\) \(\frac{1}{2^{100}}\)

\(\Rightarrow\)A = \(\frac{1-\frac{1}{2^{100}}}{3}\)\(\frac{1}{3}\)

Nguyễn Thùy Linh
Xem chi tiết
uzumaki naruto
15 tháng 8 2018 lúc 22:16

admin là con chó

lenomessi
Xem chi tiết
ngu thi hong
15 tháng 8 2018 lúc 2:24

A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)

ta cho nó dài hơn như sau

A=(2/3+3/4+4/5+5/6+....+98/99+99/100)

ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số

2:3:4:5...99 vậy ta còn các số 2/100

ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99

làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100

vậy với (2/3+3/4+...+98/99) ra 2/99

xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây

Nguyễn Lê Thảo Lam
Xem chi tiết
Nhật Hạ
7 tháng 6 2019 lúc 20:04

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)

\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)

\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)

Vậy...

P/s: Hoq chắc

T.Ps
7 tháng 6 2019 lúc 20:06

#)Giải :

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)

\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)

Đông Phương Lạc
7 tháng 6 2019 lúc 20:16

Ta có:

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...\frac{100}{2}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\times\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}\)

\(\Rightarrow\frac{A}{B}=\frac{1}{100}\)

inteligent
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
16 tháng 5 2015 lúc 8:59

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)

Nguyễn Thị Gia Ngọc
Xem chi tiết
Đặng Xuân Hiếu
3 tháng 4 2015 lúc 20:20

Câu A

Ta có (1/2)A  = 1/22 + 1/23 + ... + 1/2100 + 1/2101

=> (1/2)A - A = - (1/2)A = (1/22 + 1/23 + ... + 1/2100 + 1/2101) - (1/2 + 1/22 + ... + 1/2100 )

                                   = 1/2101 - 1/2

=> A = 1 - 1/2100

Câu B

Ta có 1/(1x2) = 1/1 - 1/2

         1/(2.3) = 1/2 - 1/3

  .................................

        1/(99.100) = 1/99 - 1/100

=> B = 1/1 - 1/2 + 1/2 - 1/3 +.... +1/99 - 1/100

        = 1 - 1/100

        =99/100

Trinh quang huy
Xem chi tiết
Đỗ Thị Dung
6 tháng 4 2019 lúc 21:14

đề thiếu bn ơi

phải là \(\frac{1}{99^2}-1\)

A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{98^2}-1\right)\).\(\left(\frac{1}{99^2}-1\right)\)

do tích A có: (99-2)+1=98 thừa số nguyên âm nên tích A dương

A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{97.99}{98^2}.\frac{98.100}{99^2}\)=\(\frac{1.3.2.4.3.5...97.99.98.100}{2^2.3^2.4^2...98^2.99^2}\)

=\(\frac{1.2.3.4...98}{2.3.4...98.99}.\frac{3.4.5...99.100}{2.3.4...98.99}\)=\(\frac{1}{99}.\frac{100}{2}\)=\(\frac{50}{99}\)

vậy A=\(\frac{50}{99}\)

#HỌC TỐT#

boy
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
16 tháng 5 2015 lúc 9:19

sao lại lấy ảnh của tui.

bài cậu hỏi tôi làm rồi đó

nhớ ****

Đinh Tuấn Việt
16 tháng 5 2015 lúc 9:07

Sao lắm bài kiểu này thế !

Trần Long Hưng
20 tháng 12 2015 lúc 13:13

Gọi b là mẫu của A, ta có: B=99/1 +98/2 +...+ 1/99 =(98/2+1) + (97/3+1) +...+ (1/99+1) +1

                                                                                = 100/2 +100/3 +...+ 100/99 +1

                                                                                = 100.(1/2+1/3+...+1/99+1/100)

=>A = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{B}\)=1/100