Cho \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
C/m \(A< \frac{1}{2}\)
a)A= \frac{1}{3^1}311+\frac{1}{3^2}321+\frac{1}{3^3}331+.........+\frac{1}{3^{99}}3991
b)B=\frac{1}{3^1}311+\frac{2}{3^2}322+\frac{3}{3^3}333+..........+\frac{99}{3^{99}}39999
các bạn làm hộ mình nhé
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Bài 1:Chứng tỏ rằng
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}< 1\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
c)\(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)
d)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2:Cho M=\(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+..+\frac{1}{9177}\).So sánh với 12
Bài 3:Với giá trị nào của x \(\in\) Z các phân số sau có giá trị là 1 số nguyên
a)A=\(\frac{3}{x-1}\) b)B=\(\frac{x-2}{x+3}\) c)C=\(\frac{2x+1}{x-3}\) d)D=\(\frac{x^2-1}{x+1}\)
Bài 4:a) Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a)\(\frac{n+1}{2n+3}\) b)\(\frac{2n+3}{4n+8}\)
Mình đang cần gấp lắm ,làm ơn
bài 1 cho a+b+c=0. CMR:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
áp dụng tính :
M=\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}}\)=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\)\(|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{1+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}\)\(=|\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}|=1+\frac{1}{2}-\frac{1}{3}\)
Tương tự ta có M=\(1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{99}-\frac{1}{100}\)=\(98+\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)
Gửi
TNs tao cuồng:c/m \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{3}{2^3}+....+\frac{100}{2^{100}}<2\)Ta có:\(2B=1+\frac{1}{2}+\frac{3}{2^2}+....+\frac{100}{2^{99}}\)\(\Rightarrow2B-B=B=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)(*)c/m \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}<1\)Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)\)\(\Rightarrow A=1-\frac{1}{2^{99}}<1\)do đó \(B=1+A-\frac{100}{2^{100}}\Rightarrow B<2-\frac{100}{2^{100}}<2\left(đpcm\right)\)
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow3A+A=\left(...\right)+\left(...\right)\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3.4A=3-1+\frac{1}{3}-...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow12A+4A=\left(...\right)+\left(...\right)\)
\(\Rightarrow16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}< 3\)
\(\Rightarrow A< \frac{3}{16}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
bài 1:
tìm n biết: 5n+7 chia hết 3n+2
bài 2:
1, tìm chữ số tận cùng của:
a,57^1999
b,93^1999
2, Cho A= 999993^1999 - 555557^1997
chứng minh rằng: A chia hết cho 5
bài 3:chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 5:Tìm x biết:
a)11.(x-6)=4.x+11
b)\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\)với x\(\in\)Z
c)|x-3|+1=x
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
bài 1:
5n+7 chia hết cho 3n+2
=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2
=> (15n + 21 - 15n - 10) chia hết cho 3n+2
=> 11 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}
Ta có bảng:
3n + 2 | 1 | -1 | 11 | -11 |
n | -1/3 (loại) | -1 (chọn) | 3 (chọn) | -13/3 (loại) |
Vậy n = {-1;3}
Bài 2:
1, chữ số tận cùng
a, Xét 71999
Ta có: 71999 = 71996.73 = (74)499.343 = (...1)499.343 = (....1).343 = ....3 (1)
Vậy số 571999 có tận cùng là 3
b, Xét 31999
Ta có: 31999 = 31996.33 = (34)499.27 = (...1)499.27 = (...1) . 27 = ....7 (2)
Vậy số 931999 có chữ số tận cùng là 7
2,
Từ (1) và (2) suy ra A = 9999931999 + 5555571999 = ...7 + ...3 = ....0
Vì A có chữ số tận cùng là 0 nên A chia hết cho 5.