Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc
với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh
tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, BE=\(\dfrac{3}{4}\)BC.Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng\(\dfrac{1}{AE^2}\)\(\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.