Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Anh Thư
Xem chi tiết
꧁WღX༺
Xem chi tiết
Nguyen Thi Yen Anh
Xem chi tiết
Nguyễn Linh Chi
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

trịnh thủy tiên
Xem chi tiết
Edowa Conan
20 tháng 8 2016 lúc 21:21

a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

           Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0

        Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

      Dấu = xảy ra khi \(x+\frac{3}{2}=0\)

                                 \(x=-\frac{3}{2}\)

Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

        Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)

               Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

     Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)

                                 \(y+\frac{1}{2}=0;y=-\frac{1}{2}\)

Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)

 

Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 21:22

a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2

b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\) 

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2

Lightning Farron
20 tháng 8 2016 lúc 21:23

a)Đặt \(A=\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

Ta thấy: \(\left|x+\frac{3}{2}\right|\ge0\)

\(\Rightarrow-\left|x+\frac{3}{2}\right|\le0\)

\(\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}-0=\frac{1}{4}\)

\(\Rightarrow A\le\frac{1}{4}\)

Dấu = khi \(x=-\frac{3}{2}\)

Vậy MaxA=\(\frac{1}{4}\Leftrightarrow x=-\frac{3}{2}\)

b)Đặt \(B=\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

Ta thấy: \(\begin{cases}\left|x-\frac{4}{3}\right|\\\left|y+\frac{1}{2}\right|\end{cases}\ge0\)

\(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\\-\left|y+\frac{1}{2}\right|\end{cases}\)\(\le0\)

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}-0=\frac{5}{3}\)

\(\Rightarrow B\le\frac{5}{3}\)

Dấu = khi \(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

Vậy MaxB=\(\frac{5}{3}\Leftrightarrow\)\(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

 

 

꧁WღX༺
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Trần Thùy Dương
7 tháng 10 2018 lúc 22:20

\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}\)

\(=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\)

Vì \(x^2+1\ge1\)

\(\Rightarrow B=\frac{3}{x^2+1}\le3\)

Dấu "=" xảy ra <=> x=0

Vậy GTLN của B =3 <=> x=0 

ivyuyen
7 tháng 10 2018 lúc 22:23

điều kiện : \(x\ne-1\)\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\Leftrightarrow\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow\frac{3}{x^2+1}\)=> B lớn nhất khi \(x^2+1\)bé nhất = > x = 0 khi B = 3
mình làm hơi vắn tắt bạn thông cảm

Đặng Thiên Long
Xem chi tiết
satoshi-gekkouga
Xem chi tiết
Hải Anh
Xem chi tiết