2.Cho tỉ lệ thức a/b=c.d.Chứng tỏ tỉ lệ thức ac/bd=(a+c)2/(b+d)2
Cho tỉ lệ thức a/b=c/d. Chứng tỏ có tỉ lệ thức \(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(đpcm\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(=\left(\frac{a+c}{b+d}\right)^2\)
Mà \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)
Vậy \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2-a^2-2ac-c^2}{b^2+d^2-b^2-2bd-d^2}=\frac{-2ac}{-2bd}=\frac{ac}{bd}\)
=>Đpcm
Cho tỉ lệ thức a trên b bằng c trên d Chứng tỏ ta có tỉ lệ thức ac bằng bd bằng( a cộng c mũ 2) trên (b cộng b mũ 2)
Cách 1 :
Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )
Vậy a+b/a-b = c+d/c-d
Cách 2:
Đặt : a/b = c/d = k
a/b = k => a= bk
c/d = k => c=dk
a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)
c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)
Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.
Áp dụng dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)
Chúc bạn học tốt!
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) .Chứng tỏ ta có tỉ lệ thức \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
ta cóa/b=c/d
áp dụng tính chất dãy tỉ số bằng nahu ta có
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=>\(\frac{a}{b}=\frac{a+c}{b+d}\)=>\(\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
hay \(\frac{a}{b}.\frac{a}{b}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(\frac{a}{b}.\frac{c}{d}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
vậy\(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
t nhé
Đặt :
a/b = c/d = k
=> a = bk; c= dk
Xét từng vế của đẳng thức ta dc :
ac/ bd = bk.dk/bd = bd.k^2/bd = k^2 (1)
(a+c)^2/(b+d)^2 = (bk+dk)^2/(b+d)^2 = k^2(b+d)^2/(b+d)^2 = k^2 (2)
Từ (1) + (2) => đpcm
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\)Chứng tỏ rằng ta có các tỉ lệ thức:
\(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Vậy ...
Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)
\(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\)
chứng tỏ ta có tỉ lệ thức: \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)
\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
VT: \(\dfrac{ac}{bd}=\dfrac{kb.kd}{b.d}=k^2\) (1)
VP: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)
Từ (1) và (2), suy ra:
\(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) (đpcm)
Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2\) \(\left(1\right)\)
Theo bài ra ta lại có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\dfrac{ac}{bd}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\left(\dfrac{a+c}{b+d}\right)^2=\left(\dfrac{a}{b}\right)^2=\dfrac{ab}{cd}\)
\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\left(ĐPCM\right)\)
Vậy \(\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) .Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a+c}{b+d}\right).\left(\frac{a+c}{b+d}\right)\)hay \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)