Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Thư
Xem chi tiết
Cô Hoàng Huyền
27 tháng 10 2016 lúc 15:13

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(đpcm\right)\)

Uzumaki Naruto
Xem chi tiết
Hà Phương
30 tháng 7 2016 lúc 20:53

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(=\left(\frac{a+c}{b+d}\right)^2\)

Mà \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)

Vậy \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)

Trần Việt Linh
30 tháng 7 2016 lúc 20:59

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

     \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2-a^2-2ac-c^2}{b^2+d^2-b^2-2bd-d^2}=\frac{-2ac}{-2bd}=\frac{ac}{bd}\)

=>Đpcm

 

Hà Phương
30 tháng 7 2016 lúc 20:48

Cái này..... khó giải thích

Kosho Kano
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
21 tháng 9 2017 lúc 14:44

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

Hải Đăng
21 tháng 9 2017 lúc 15:53

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)

Chúc bạn học tốt!

Vũ Minh Hằng
Xem chi tiết
Ngô Tấn Đạt
26 tháng 9 2017 lúc 18:58

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Trần Bình Minh
12 tháng 9 2017 lúc 20:04

Trong sách có nhé , bạn ạ

See you again
Xem chi tiết
Nguyễn Thị Kim Oanh
6 tháng 11 2017 lúc 21:11

ta cóa/b=c/d

áp dụng tính chất dãy tỉ số bằng nahu ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=>\(\frac{a}{b}=\frac{a+c}{b+d}\)=>\(\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

hay \(\frac{a}{b}.\frac{a}{b}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(\frac{a}{b}.\frac{c}{d}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

vậy\(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

t nhé

Thanh Hằng Nguyễn
6 tháng 11 2017 lúc 21:11

Đặt :

a/b = c/d = k

=> a = bk; c= dk

Xét từng vế của đẳng thức ta dc :

ac/ bd = bk.dk/bd = bd.k^2/bd = k^2 (1)

(a+c)^2/(b+d)^2 = (bk+dk)^2/(b+d)^2 = k^2(b+d)^2/(b+d)^2 = k^2 (2)

Từ (1) + (2) => đpcm

đỗ thị kiều trinh
Xem chi tiết
soyeon_Tiểubàng giải
24 tháng 9 2016 lúc 20:20

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

GT 6916
Xem chi tiết
Trương Phi Hùng
10 tháng 11 2018 lúc 20:48

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Vậy ...

Edogawa Conan
10 tháng 11 2018 lúc 20:48

Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

          \(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

KaKa Ri
Xem chi tiết
Nguyễn Thanh Hằng
8 tháng 8 2017 lúc 20:27

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)

Lê Gia Bảo
8 tháng 8 2017 lúc 20:41

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

VT: \(\dfrac{ac}{bd}=\dfrac{kb.kd}{b.d}=k^2\) (1)

VP: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) (2), suy ra:

\(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) (đpcm)

Trần Quốc Lộc
9 tháng 8 2017 lúc 9:33

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2\) \(\left(1\right)\)

Theo bài ra ta lại có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\dfrac{ac}{bd}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\left(\dfrac{a+c}{b+d}\right)^2=\left(\dfrac{a}{b}\right)^2=\dfrac{ab}{cd}\)

\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\left(ĐPCM\right)\)

Vậy \(\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\)

Nam Phạm Thành
Xem chi tiết
Thanh Tùng DZ
22 tháng 5 2018 lúc 19:45

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a+c}{b+d}\right).\left(\frac{a+c}{b+d}\right)\)hay \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)