Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ho thi lanh
Xem chi tiết
lalalalala12345
Xem chi tiết
nguyễn thị huyền anh
28 tháng 6 2018 lúc 17:22

theo bài ra ta có 

\(\frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\Leftrightarrow6yz+3xz+2xy=0\)       (1)

\(x+2y+3z=4\Leftrightarrow\left(x+2y+3z\right)^2=16\)

                                       \(\Leftrightarrow x^2+4y^2+9z^2+2\left(6yz+3xz+2xy\right)=16\)(2)

                               thay  (1) vào (2)  ta được 

\(x^2+4y^2+9z^2=16\)

Trần Lê Anh Quân
Xem chi tiết
Vũ Ngọc Mai
Xem chi tiết
Vu Dang Toan
Xem chi tiết
Thắng Nguyễn
26 tháng 10 2016 lúc 21:58

Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\) 

\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Áp dụng Bđt Cô si ngược dấu ta có:

\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)

\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)

Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)

tân
Xem chi tiết
Akai Haruma
25 tháng 8 lúc 16:36

Lời giải:

Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.

Khi đó:

$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$

$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$

Nguyễn Anh Tú
Xem chi tiết
Nguyễn Thị Yến Nhi
Xem chi tiết
bao quynh Cao
10 tháng 3 2016 lúc 20:11

vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)

       \(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)

       \(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)

          \(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)

 \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)

                      \(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)

                        

Lê Thị Vân Anh
Xem chi tiết