Cho (x+2y)2 +(y-1)2 +(x-z)2=0. Tính x+2y+3z
cho x y z khác 0 và x - 2y + 3z = 0
tính N = ( 1 + 3z/x)(2 - x/y )( 3 - 2y/z )
Cho x,y,z khác 0
x+ 2y+3z=4
1/x + 1/2y + 1/3z = 0
Tính C=x^2+4y^2+9x^2
theo bài ra ta có
\(\frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\Leftrightarrow6yz+3xz+2xy=0\) (1)
\(x+2y+3z=4\Leftrightarrow\left(x+2y+3z\right)^2=16\)
\(\Leftrightarrow x^2+4y^2+9z^2+2\left(6yz+3xz+2xy\right)=16\)(2)
thay (1) vào (2) ta được
\(x^2+4y^2+9z^2=16\)
Cho x,y,z khác 0 và x-2y+3z tính N=(1+3 z/x)(2-x/y)(3-2y/z)
Tính giá trị của A = x + 2y + 3z biết ( x + 2y) ^2 + ( y - 1 )^2 + ( x - z ) ^ 2 = 0
Cho x , y , z > 0 thỏa mãn : x + 2y + 3z = 3
Tìm min \(\frac{x}{1+4y^2}+\frac{2y}{1+9z^2}+\frac{3z}{1+x^2}\)
Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\)
\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Áp dụng Bđt Cô si ngược dấu ta có:
\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)
Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)
Lời giải:
Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:
$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$
Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.
Khi đó:
$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$
$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$
Cho P= ( x+2y-3z) / (x-2y+3z) ( x-2y+3z khác 0). Tính P biết x,y,z tỉ lệ với 5,4,3
Tính giá trị của A=x+2y+3z
biết (x+2y)2+(y-1)2+(x-z)2=0
giúp mik vs nha
vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)
\(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)
\(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)
\(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)
\(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)
tính giá trị của a = x + 2y + 3z biết \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)