Tìm x,y thuộc Q
x+y=x:y=3(x-y) (y khác 0)
Tìm x, y thuộc Q sao cho: x-y=xy=x:y (y khác 0)
Có: x+y=xy <=> x+y-xy=0 <=> x(1-y) -1+y +1=0 <=> (x-1)(1-y)= -1
Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y
Nếu x,y nguyên thì giải như sau
Từ (x-1)(1-y)= -1
Suy ra x-1, 1-y là các ước nguyên của -1
Suy ra có các trường hợp sau
x-1=1 <=> x=2
1-y=-1<=> y=2
và
x-1= -1 <=> x=0
1-y=1 <=> y=0
Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)
bạn Nghĩa nè. trường hợp y=0 loại nha
xy=x:y=>y.y=x:x=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0=1
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy x=1/2 y=-1
Tìm x, y thuộc Q sao cho : x+y=x.y=x:y(y khác 0)
Câu 2 : x-y=x.y=x:y( y khác 0)
Câu 3: Chứng minh rằng từ tỉ lệ thức a:b=c:d ( a-b khác 0, c-d khác 0)ta có thể suy ra tỉ lệ thức a+b: a-b = c+ d chia cho c-d( phân số nha) tại mình bấm không được
Tìm x,y thuộc Q:
x+y = x.y = x:y ( y khác 0 )
Từ x + y = x.y = x : y
=> x.y = x : y
=> \(xy-\frac{x}{y}=0\Rightarrow x\left(y-\frac{1}{y}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\y-\frac{1}{y}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{y}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\pm1\end{cases}}\)
Nếu x = 0
Khi đó x + y = xy
=> 0 + y = 0.y
=> y = 0 (loại)
Nếu y = 1
=> x + y = xy
<=> x + 1 = x
=> 0x = -1 (loại)
Nếu y = - 1
=> x + y = xy
<=> x - 1 = -x
=> 2x = 1
=> x = 0,5 (tm)
Vậy x = 0,5 ; y = -1
\(x\cdot y=\frac{x}{y}\)
\(y\cdot y=\frac{x}{x}\)
\(y^2=1\)
\(y=\pm\sqrt{1}=\pm1\)
\(x+y=x\cdot y\)
TH1 : thế y = 1
\(x+1=x\cdot1\)
\(x+1=x\)
\(x-x=-1\)
\(0x=-1\left(sai\right)\)
Suy ra vô nghiệm x
TH 2 : Thế y = -1
\(x-1=x\cdot\left(-1\right)\)
\(x-1=-x\)
\(x+x=1\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\) ; y = -1
có cách khác nhanh hơn các bạn thử nghĩ xem
tìm x,y thuộc Q (y khác 0) sao cho
x-y = x.y = x:y
vì x-y = x.y (gt) \(\Rightarrow\) x = x.y + y = y.(x+1) \(\Rightarrow\) x:y = x+1 (1)
Mà x-y = x:y (gt) (2)
Từ (1) và (2) suy ra: x-y = x+1
x + (-y) = x+1
-y = 1
\(\Rightarrow y=-1\)
Vì x : y = x+1 ( theo (1) )
Suy ra: x : (-1) = x+1 \(\Rightarrow x=-1.\left(x+1\right)\)
\(\Rightarrow x=-x+\left(-1\right)\)
\(\Rightarrow x-\left(-x\right)=-1\)
\(\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
Vậy x = \(\frac{-1}{2}\); y = -1
Tìm số hữu tỉ x;y biết:
a) x+y=xy=x-y=x:y (y khác 0)
b)2(x+y)=x-y=x:y (y khác 0)
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1
Tìm hai số hữu tỉ x và y sao cho :
a) x+y =xy=x:y ( y khác 0)
b) x-y=xy=x:y( y khác 0)
tìm x,y khác 0 sao cho x+3.y=4.x.y=x:y
Ta có:
4xy=x:y
4.x.y.y=x
4.x.y^2=x
=> 4.y^2=1 thì y^2=1/4 => y=1/2 hoặc -1/2
nếu y=1/2:
x+3.y=4.x.y
x+3.1/2=4.x.1/2
x+1,5=2x => x=1.5
nếu y=-1/2
x+3y=4xy
x-3.1/2=-1/2.4.x
x-1,5=-2x
x-(-2x)=1,5
3x=1,5 thì x=0.5
tìm x,y ( y khác 0) biết : x + y=x.y=x:y
Ta có:
x + y = x.y => x = x.y - y = y.(x - 1)
=> x : y = x - 1 = x + y
=> y = -1
=> x = -1.(x - 1) = -x + 1
=> x + x = 1 = 2x
=> x = 1/2
Vậy x = 1/2; y = -1