Tìm x :
I x-4I -x +2=0
Tìm x thuộc Z :
a) (x-5).(x2+5)=0
b) I2x-1I < hoặc =3
c)I x-4I >2
Tìm x thuộc Z :
a) (x-5).(x2+5)=0
b) I2x-1I < hoặc =3
c)I x-4I >2
tìm x biết
(1/7x-2/7) .(-1/5x+3/5).(1/3x+4/3)=0
I5/3xI=I-1/6I
I3/4x-3/4I-3/4=I-3/4I
I là trị tuyệt đối nhá
tìm các giá trị của x để các biể thức sau có giá trị dương
A=x mũ 2+4x
E=x-2 trên x-6
2 tick nha
\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(\frac{-1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\hept{\begin{cases}\frac{1}{7}x-\frac{2}{7}=0\\\frac{-1}{5}x+\frac{3}{5}=0\\\frac{1}{3}x+\frac{4}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=3\\x=-4\end{cases}}}\)
KL
b, \(\left|\frac{5}{3}x\right|=\left|\frac{-1}{6}\right|\)
\(\left|\frac{5}{3}x\right|=\frac{1}{6}\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{3}x=\frac{1}{6}\\\frac{5}{3}x=\frac{-1}{6}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}\\x=\frac{-1}{10}\end{cases}}}\)
KL
c, \(\left|\frac{3}{4}x-\frac{3}{4}\right|-\frac{3}{4}=\left|\frac{-3}{4}\right|\)
\(\left|\frac{3}{4}x-\frac{3}{4}\right|-\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow\left|\frac{3}{4}x-\frac{3}{4}\right|=\frac{3}{2}\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\\frac{3}{4}x-\frac{3}{4}=\frac{-3}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{-3}{4}\end{cases}}}\)
KL
tìm x :
a) xy-10x-12y+128 =0
b) xy -2x +4y =10
c) I x+1 I + I x+2 I +Ix+3I+Ix+4I =5x+5
TÌM x, y, z thuộc Q:
b, I x-3/4I+I 2/5-yI+Ix-y+zI=0
Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)
Vậy x = 3/4 ; y = 2/5 ; z = -7/20
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
Ta có: \(\left|x-\frac{3}{4}\right|;\left|\frac{2}{5}-y\right|;\left|x-y+z\right|\ge0\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)
Mà \(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\Rightarrow z=\frac{-7}{20}\end{cases}}\)
Tìm x biết:
4.(x-7)-2.(3x-8)=I-4I.3-(-22)
\(4\left(x-7\right)-2\left(3x-8\right)=\left|-4\right|\cdot3-\left(-22\right)\)
\(4x-28-6x+16=34\)
\(-2x-12=34\)
\(-2x=46\)
\(x=-23\)
tìm MIN A
A= I x+ 5I + I x- 4I
Ta có:\(\left|x+5\right|+\left|x-4\right|=\left|x+5\right|+\left|4-x\right|>\left|x+5+4-x\right|\)-x| =9
Dấu ''='' xảy ra <=>(x+5)(4-x)>0
<=>-5<=x<=4
Vậy min(A)=9<=>-5<=x<=4
(x+20)^100 + I y+4I =0
\(\left(x+20\right)^{100}+\left|y+4\right|=0.\)
\(Nx:\left(x+20\right)^{100}\ge0;\left|y+4\right|\ge0\)
\(\Rightarrow VT=0\Leftrightarrow\left(x+20\right)^{100}=0,\left|y+4\right|=0\)
\(\left(x+20\right)^{100}=0\Leftrightarrow x+20=0\Leftrightarrow x=-20\)
\(\left|y+4\right|=0\Leftrightarrow y+4=0\Leftrightarrow y=-4\)
Vậy x = -20 và y = -4
\(\left(x+20\right)^{100}\ge0,\left|y+4\right|\ge0\)
mà \(\left(x+20\right)^{100}+\left|y-4\right|=0\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+20\right)^{100}=0\Rightarrow x=-20\\\left|y+4\right|=0\Rightarrow y+4=0\Rightarrow y=-4\end{cases}}\)
vậy x=-20, y=-4
TÌM x, y, z, thuộc Q biết:
a,I x+1/2I+I y-3/4I+I z+1I=0
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)