Tìm x,y,z:
10x=15y=21z và 3x-7y+5z=30
Tìm x;y;z biết
10x=15y=21z và 3x-7y+5z=30
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{10}}\) =\(\frac{y}{\frac{1}{15}}\)=\(\frac{z}{\frac{1}{21}}\)=\(\frac{3.x}{\frac{3}{10}}\)=\(\frac{7.y}{\frac{7}{15}}\)=\(\frac{5.z}{\frac{5}{21}}\)=\(\frac{3.x-7.y+5.z}{\frac{1}{14}}\)=\(\frac{30}{\frac{1}{14}}\)=420
=>\(\hept{\begin{cases}10.x=420\\15.y=420\\21.z=420\end{cases}}\)=>\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
TK mình nhé
tìm x biết: 10x=15y=21z và 3x-7y+5z=30
Ta có: 10x = 15y = 21z => 10x = 15y; 15y = 21z
=> \(\frac{x}{15}=\frac{y}{10};\frac{y}{21}=\frac{z}{15}\) => \(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}=\frac{3x-7y+5z}{3\cdot315-7\cdot210+5\cdot150}=\frac{30}{225}=\frac{2}{15}\)
Suy ra: \(\frac{x}{315}=\frac{2}{15}\Rightarrow x=\frac{315\cdot2}{15}=42\)
đề chỉ tìm x nhưng mk giúp bn tìm lun y, z nhé:
\(\frac{y}{210}=\frac{2}{15}\Rightarrow y=\frac{210\cdot2}{15}=28\)
\(\frac{z}{150}=\frac{2}{15}\Rightarrow z=\frac{150\cdot2}{15}=20\)
ta có vì 10x=15y=21z nên => x/1/10=y/1/15=z/1/21
=>3x/3/10 = 7y/7/15=5z/5/21
Ap dụng tính chất dãy các tỉ số bằng nhu ta có
3x-7y+5z / 3/10-7/15+5/21 =30 / 1/14 =420
với 3x / 3/10 =420 => x= 420. 3/10 : =42
với 7y / 7/15 = 420 => x=420. 7/15 : 7=28
với 5z / 5/21=420 => x=420. 5/21 : 5=20
Tính x,y,z biết
10x=15y=21z và 3x-7y+5z=30
Theo đề : \(10x=15y=21z\)
\(\Rightarrow\)\(\dfrac{x}{\dfrac{1}{10}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{21}}\) và \(3x-7y+5z=30\)
Áp dụng dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{\dfrac{1}{10}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{21}}=\dfrac{3x}{\dfrac{3}{10}}=\dfrac{7y}{\dfrac{7}{15}}=\dfrac{5z}{\dfrac{5}{21}}=\dfrac{3x-7y+5z}{\dfrac{3}{10}-\dfrac{7}{15}+\dfrac{5}{21}}=\dfrac{30}{\dfrac{1}{14}}=420\)
\(\Rightarrow\left\{{}\begin{matrix}10x=420\\15y=420\\21z=420\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)
\(10x=15y=21z\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3.21-7.14+5.10}=\dfrac{30}{15}=2\)
=>\(x=2.21=42\)
\(y=2.14=28\)
\(z=2.10=20\)
Vậy...
Tìm x; y ; z biết 2x=3y ; 5y= 7z va 3x - 7y + 5z =30. Điền vào (........)
+)2x = 3y; 5y = 7z
+) 10x = 15y= 21z ( Quy dong)
+) 10x/210 = 15y/210= 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( rut gon)
+) 3x/63 = 7y/98 = 5z/50 ( xuat hien 3x,7y,5z )
Ap dung tinh chat day so bang nhau,ta co :
3x/63 =7y/98 = 5z/50 = 3x - 7y -5z/63 - 98 - 50 = 30/15 = 2
+) x/21 = 2 => ..............
+) y/14 =2 => ...............
+) z/10 = 2 => ..............
Tim x,y,z biet:
a, x/2=y/3; y/5=z/7 va x+y+z=138
b, 10x=15y=21z va 3x-7y+5z=30
Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
Do đó : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
Nên : \(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Vậy x = 30 ; y = 45 ; z = 63
10x=15y=21z va 3x-7y=5z=30
1. Tìm a, a, c biết:
3a = 2b; 3c = 4b và a2 - b2 + 2c2 = 180
2. Tìm x, y, z biết:
10x = 15y = 21z và 3x - 7y + 5z = 30
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
a)\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)và \(2x^2+y^2+3z^2=316\)
b)\(10x=15y=21z\)và \(3x-7y+5z=30\)