Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Hoàng Lâm
Xem chi tiết
phan thị minh anh
Xem chi tiết
phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 7 2016 lúc 14:44

a) \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-x^2+6x-5\) (ĐKXĐ : \(1\le x\le5\) )\

Ta có : \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

\(\Rightarrow\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}\ge1+3=4\)

Lại có : \(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)

Do đó, phương trình tương đương với : \(\begin{cases}1\le x\le5\\\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=4\\-x^2+6x-5=4\end{cases}\)\(\Rightarrow x=3\left(TM\right)\)

Vậy nghiệm của phương trình là x = 3

b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Mặt khác, ta có : \(\begin{cases}\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{cases}\)\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)

Dấu đẳng thức xảy ra <=> x = 2.

Vậy nghiệm của phương trình :  x = 2

 

poppy Trang
Xem chi tiết
hà ngọc ánh
Xem chi tiết
s2 Lắc Lư  s2
11 tháng 5 2017 lúc 20:48

Viết nốt đi bạn ơi!! 

nguyễn kiều ngọc diệp
24 tháng 11 2019 lúc 20:28

Viết tiếp đi.Không có kết quả là bao nhiêu thì làm sao giải được???

Khách vãng lai đã xóa
nguyen ngoc son
Xem chi tiết
Edogawa Conan
2 tháng 9 2021 lúc 16:31

a,ĐK: x≥4

Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}=4\)

      \(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)

Edogawa Conan
2 tháng 9 2021 lúc 16:35

b, ĐK: x≥2

Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)

      \(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

      \(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)

Edogawa Conan
2 tháng 9 2021 lúc 16:38

undefined

Phúc Hồ Thị Ngọc
Xem chi tiết
Mr Lazy
17 tháng 7 2015 lúc 12:47

b/

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)

\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)

Ex Crush
Xem chi tiết
Lương Minh THảo
Xem chi tiết
Trần Thanh Phương
25 tháng 8 2019 lúc 21:28

Mình fix luôn đề nhé.

Ta có :

+) \(\sqrt{3x^2-18x+28}=\sqrt{3\left(x^2-6x+9\right)+1}\)

\(=\sqrt{3\left(x-3\right)^2+1}\ge1\forall x\)

+) \(\sqrt{4x^2-24x+45}=\sqrt{4\left(x^2-6x+9\right)+9}\)

\(=\sqrt{3\left(x-3\right)^2+9}\ge\sqrt{9}=3\forall x\)

Do đó \(VT\ge4\forall x\)

Xét \(VP=-5-x^2+6x\)

\(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=4-\left(x-3\right)^2\le4\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\).

Lê Thị Thục Hiền
25 tháng 8 2019 lúc 21:29

\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)

<=> \(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=4-\left(x^2-6x+9\right)\)

<=> \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=4-\left(x-3\right)^2\)

\(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{0+1}=1\)

\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{0+9}=3\)

=> VT=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge1+3=4\)

VP=\(4-\left(x-3\right)^2\le4\) với mọi x

=> Để VT=VP <=> \(x-3=0\) <=>x=3(t/m)

Vậy pt có nghiệm x=3