giải phương trình \(\left(x-3\right)\left(x+1\right)+\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
Giải phương trình:
\(\frac{2\left(x-\sqrt{3}\right)\left(x-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
Bài Toán :
Giải phương trình sau :
\(\frac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4.\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Giải phương trình sau :
\(\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]=\frac{2}{\sqrt{3}}+\sqrt{\frac{1-x^2}{3}}\)
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
Giải phương trình:
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}\)\(=\frac{1}{3x\left(x^2+2\right)}\)\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)\(=4\left(2-\sqrt{3}\right)\)Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Giải hệ phương trình :
\(\hept{\begin{cases}x^3+y^3+7\left(x+y\right)=3\left(x^2+xy+y^2+5\right)\left(1\right)\\\sqrt{\frac{3}{x+1}}+\sqrt{\frac{3}{y+1}}=\frac{4}{\sqrt{x}+\sqrt{y}}\left(2\right)\end{cases}}\)
bai nao cung kho zay bn co bai nao de de thi minh lam duoc chu bai nay thi minh chiu thoi!
chuc bn hoc gioi nha!
Giải phương trình
\(\frac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{5\left(x-1\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
giải phương trình \(8-\left(x-1\right)\left(x-3\right)=2\left(x-1\right)\sqrt{\frac{x+3}{x-1}}\)