CMR không có số hữu tỉ nào bình phương bằng 2.
CMR không có số hữu tỉ nào bình phương bằng 2.
đề sai nhé, có số hữu tỉ bình phương = 2 mà
Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\)( ƯCLN(m;n) = 1 )
\(\Rightarrow\frac{m^2}{n^2}=2\)
\(\Rightarrow m^2=2n^2\)
Mà ƯCLN(m;n)=1 nên \(m^2\)chia hết cho 2
\(\Rightarrow m\)chia hết cho 2 ( vì 2 là số nguyên tố )
Đặt \(m=2k\)
\(\Rightarrow4k^2=2n^2\)
\(\Rightarrow n^2=2k^2\)
Tương tự, n phải chia hết cho 2
DO đó ƯCLN(m;n) = 2, trái với điều kiện.
Vậy ...
GS có số hữu tỉ a
Ta có: a^2=2
=> a^2 - 2=0
=> a^2 - (căn bậc hai của 2)^2=0
=>(a+căn bậc hai của 2)*(a-căn bậc hai của 2)=0
=>a+căn bậc hai của 2=0 hoặc a-căn bậc hai của 2=0
Với a+căn bậc hai của 2 = 0 Với a-căn bậc hai của 2 = 0
=> a = -(căn bậc hai của 2) => a = căn bậc hai của 2
Vì căn bậc hai của 2 và -(căn bậc hai của 2) không phải là một số hữu tỉ
a không phải là số hữu tỉ (trái với đề bài)
=> DPCM
CMR không có số hữu tỉ nào mà bình phương bằng 3
#)Giải :
Giả sử có số hữu tỉ \(\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)mà bình phương bằng 3
Ta có : \(\left(\frac{a}{b}\right)^2=3\)
\(\Leftrightarrow a^2=3b^2\)
\(a^2⋮3^2\Rightarrow3b^2⋮3^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
Vì \(a⋮3\)và \(b⋮3\)nên \(ƯCLN\left(a,b\right)\ge3\)( vô lí )
Vậy không có số hữu tỉ nào mà bình phương bằng 3
#~Will~be~Pens~#
Link nek
https://olm.vn/hoi-dap/detail/106839914043.html
Hok tốt
Mấy bạn giúp mình bài này với :
CMR : không có số hữu tỉ nào bình phương = 3
bạn lên google thử chứ tụi này mới lớp 6 ah
Vì số có bình phương bằng 3 là \(\sqrt{3}\) hoặc \(-\sqrt{3}\)
Mà \(\sqrt{3}\) và \(-\sqrt{3}\) không phải là số hữu tỉ nên không có số hữu tỉ nào bình phương bằng 3
Vậy không có số hữu tỉ nào bình phương bằng 3
Chứng minh rằng không tồn tại số hữu tỉ nào có bình phương bằng 2, 3, 6 ?
giả sử tồn tại số hữu tỉ có bình phương bằng 2
coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)
ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}
=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2
CM tương tự vs 3 và 6 nhé
1.cmr ko có số hữu tỉ nào bình phương = 5;=12
2. cmr:bình phương của một số hữu tỉ là 1 số nguyên thì số đó là số nguyên
Chứng tỏ rằng không tồn tại số hữu tỉ nào mà bình phương lên bằng 2 ( có thể thay số 2 bằng các số 3,5,6,7 )
Ta sẽ chứng minh bằng phương pháp phản chứng .
Giả sử có tồn tại một số hữu tỉ \(\frac{x}{y}\left(x;y\in Z;\left(x;y\right)=1\right)\) sao cho \(\frac{x}{y}=\sqrt{2}\)
\(\Rightarrow\frac{x^2}{y^2}=2\)
\(\Rightarrow\frac{x^2}{2}=y^2\)
Mà y là số nguyen => y^2 là số nguyên
\(\Rightarrow x^2⋮2\)
\(\Rightarrow x^2⋮4\)
Mặt khác \(x^2=2y^2\)
=> \(2y^2⋮4\)
\(\Rightarrow y^2⋮4\)
=> \(ƯC_{\left(x;y\right)}=4\)
Trái với giả thiết
=> Không tồn tại số hữu tỉ nào mà bình phương lên bằng 2
chứng minh rằng không có số hữu tỉ nào bình phương bằng 5
Gs bình phương của số hữu tỉ a bằng 5.
Ta có: a^2=5
=> a^2 - 5 = 0
=> a^2 - (cbh của năm)^2 = 0
=> (a - cbh của 5)*(a+cbh của 5)=0
=> a-(cbh của 5) bằng 0 => a=cbh của 5
hoặc a + cbh của 5 bằng 0 => a= -(cbh của 5)
Vì cbh của 5 và -(cbh của 5) là 2 số vô tỉ
=> trái vs điều gs
=> DPCM
chứng minh rằng không có số hữu tỉ nào bình phương bằng 12
Ta có:12=22.3
=>Số có bình phương bằng 12 là 2.\(\sqrt{3}\)
Do \(\sqrt{3}\) không phải số hữu tỉ nên =>2.\(\sqrt{3}\)không phải số hữu tỉ
=>không có số hữu tỉ nào có bình phương bằng 12
Chứng minh rằng không tồn tại số hữu tỉ nào có bình phương bằng 7
Gia su co so huu ti co binh phuong = 7
Tức a^2=7 ( a = m/n với m,n ngto cùng nhau hay hiểu là ko chia hết cho số nao dc nx)
<=> m^2/n^2=7=> m^2=7n^2 =>m^2 chia hết cho 7 => m chia hết cho 7 => m=7k( k thuộc Z)
=> 49k^2=7n^2<=>7k^2=n^2 => n^2 chia hết cho 7 => n chia hết cho 7 => n = 7t(t thuộc Z)
=> a=m/n = 7k/7t=k/t (vô lí) => ko tồn tại.