Tính x
\(y=\frac{0}{8977^2+\sqrt{8777}}\)
Tính
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}\) với \(a>b>0\)
b)\(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}\)với \(x>0\)
c)\(2y^2\sqrt{\frac{x^4}{4y^2}}\)với \(y< 0\)
d)\(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}\)với \(x>0,y\ne o\)
e)\(5xy.\sqrt{\frac{25x^2}{y^6}}\)với \(x< 0,y>0\)
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)
b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)
c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)
d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)
e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)
Cho x, y , z > 0 t/man: \(x+y+z=\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)Tính:
\(\frac{\sqrt{x}}{y+z}+\frac{\sqrt{y}}{x+z}+\frac{\sqrt{z}}{x+y}\)
Biết \(0< x\le y\)và \(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(x+2y\right)}\right)+\left(\frac{y}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}\right)=\frac{5}{3}\)
Tính \(\frac{x}{y}\)
Cho x , y, z > 0 thoa man: \(x+y+z=\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
Tính: \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)
Cho x,y>0 tm xy+x+y=1. Tính
\(S=x\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+y\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)
cho x,y,z >0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2014\)
tính Amin=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath
bài này dễ mà
//vndoc.com/de-thi-hoc-sinh-gioi-lop-9-thcs-tinh-thanh-hoa-nam-hoc-2010-2011-mon-giao-duc-cong-dan-co-dap-an/download
1/ Tính:
\(A=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
2/ Rút gon:
\(\left(\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-2\right):\frac{1}{\sqrt{x}+2}\)với x,y>0
Cho 4y > 9x > 0 và 9\(\sqrt{\frac{x}{y}}\)+ 4\(\sqrt{\frac{y}{x}}\)= 20
Tính giá trị của biểu thức A = \(\frac{3\sqrt{x}-2\sqrt{y}}{3\sqrt{x}+2\sqrt{y}}\)
Bài 1: Rút gọn biểu thức:
\(A=\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\) Với x>0, y>0, x#y
Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
\(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)
\(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)
Vậy giá trị biểu thức \(A=1.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)