\(\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}+....+\frac{1}{p_n}< 2\)
Cho \(f\left(n\right)=\left(n^2+n+1\right)^2+1\) với n là số nguyên dương.
Đặt \(P_n=\frac{f\left(1\right).f\left(3\right).f\left(5\right).......f\left(2n-1\right)}{f\left(2\right).f\left(4\right).f\left(6\right).......f\left(2n\right)}\).Chứng minh rằng:\(P_1+P_2+P_3+...........+P_n< \frac{1}{2}\)
So sánh các tích sau bằng cách hợp lí:
\(P_1=\left(-\frac{57}{95}\right).\left(-\frac{29}{60}\right);\) \(P_2=\left(-\frac{5}{11}\right).\left(-\frac{49}{73}\right).\left(-\frac{6}{23}\right)\)
\(P_3=\frac{-4}{11}.\frac{-3}{11}.\frac{-2}{11}.....\frac{3}{11}.\frac{4}{11}\)
Xét dãy tích P1 ta thấy 2 thừa số đều âm
=> P1 dương <=> P1 > 0
Xét dãy tích P2 ta thấy có 3 thừa số âm
=> P2 âm <=> P2 < 0
XXets dãy P3 thấy trong đó có một thừa số là \(\frac{0}{11}=0\)
=> P3 = 0
Vậy P2 < P3 < P1
P1 có 2 thừa số âm => P1 là số dương
P2 có 3 thừa số âm => P2 là số âm
P3 có 1 thừa số \(\frac{0}{11}\)=> P3=0
Từ đây suy ra P2<P3<P1
Gọi chiều dài ban đầu của lò xo là . Lần lượt treo quả nặng có trọng lượng và vào thì lò xo bị dãn thêm 1 đoạn là , . Mối quan hệ nào của các đại lượng dưới đây là đúng?
Gọi chiều dài ban đầu của lò xo là . Lần lượt treo quả nặng có trọng lượng và vào thì lò xo bị dãn thêm 1 đoạn là , . Mối quan hệ nào của các đại lượng dưới đây là đúng?
mình chọn ý D
nếu đúng thì tick cho mình nhé
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)
\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)
do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)
\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)
k=2 thì 4b+1=2a+2b hay 2b=2a-1
k=1 thì 3b+1=a
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
1:
Nếu trong 5 số \(p_1,p_2,p_3,p_4,p_5\) không có số nào chia hết cho 3 thì:
\(p_i^2\equiv1\left(mod3\right)\forall i\in\overline{1,5}\Rightarrow p_6^2\equiv5\equiv2\left(mod3\right)\) (vô lí).
Do đó trong 5 số đó có 1 số chia hết cho 3. Giả sử \(p_1⋮3\Rightarrow p_1=3\).
Ta có: \(9+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\).
Nếu các số \(p_2,p_3,p_4,p_5\) đều lẻ thì \(p_j^2\equiv1\left(mod8\right)\forall j\in\overline{2,5}\Rightarrow p_6^2\equiv5\left(mod8\right)\) (vô lí).
Do đó trong 4 số đó có 1 số chẵn. Giả sử \(p_2⋮2\Rightarrow p_2=2\).
Ta có: \(13+p_3^2+p_4^2+p_5^2=p_6^2\).
Dễ thấy \(p_6\) lẻ nên \(p_3^2+p_4^2+p_5^2\) chẵn. Do đó trong 3 số \(p_3,p_4,p_5\), giả sử \(p_3\) chẵn thì \(p_3=2\).
Ta có: \(17+p_4^2+p_5^2=p_6^2\).
Tương tự cách làm ở trên nếu \(p_4,p_5\) lẻ thì \(p_6^2\equiv3\left(mod8\right)\) (vô lí).
Do đó giả sử \(p_4⋮2\Rightarrow p_4=2\).
Ta có: \(21+p_5^2=p_6^2\Rightarrow p_5⋮2\Rightarrow p_5=2;p_6=5\).
Vậy p1 = 3; p2 = p3 = p4 = p5 = 2; p6 = 5.
Ba vật có khối lượng , , . Nếu trọng lượng có mối liên hệ là thì khối lượng của chúng có mối liên hệ:
Ta có \(P_2=\frac{P_1+P_3}{2}\\ \Rightarrow10m_2=\frac{10m_1+10m_3}{2}\\ \Rightarrow m_2=\frac{m_1+m_3}{2}\)
Tìm tất cả các số nguyên tố \(p_1;p_2;p_3;...;p_8\) sao cho
\(p_1^2+p_2^2+p_3^2+.......+p_7^2=p^2_8\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em bài toán về chủ đề số học với ạ!
Em cám ơn nhiều lắm ạ!
Cho p1>p2là 2 số nguyên tố lẻ liên tiếp .Chứng minh \(\frac{p_1+p_2}{2}\)là hợp số