Tìm x thuộc Z
4x+3 chia hết cho x-2
Cho tổng A= 12+15+x, x thuộc IN . Tìm x để a) A chia hết cho 3 b) A không chia hết cho 3
Cho tổng A= 8+12+x, x thuộc IN . Tìm x để a) A chia hết cho 2 b) A không chia hết cho 2
Ta có nhận xét 12 ⋮3; 15⋮ 312 ⋮3; 15⋮ 3. Do đó:
a) Để A chia hết cho 3 thì x⋮ 3x⋮ 3. Vậy x có dạng: x = 3k (k∈N)(k∈N)
b) Để A không chia hết cho 3 thì x không chia hết cho 3. Vậy x có dạng: x = 3k + l hoặc
x = 3k + 2 (k∈N)(k∈N).
Câu 1. Tìm x thuộc N biết:
96 chia hết cho x
120 chia hết cho x
Câu 2. Tìm STN biết:
180 chia hết cho x
216 chia hết cho x
x lớn hơn 6
Câu 3. Tìm x thuộc N biết:
50 chia hết cho x
80 chia hết cho x
Câu 4. Tìm x thuộc N biết:
126 chia hết cho x
180 chia hết cho x
Câu 5.
Tìm x thuộc N biết:
144 chia hết cho x
96 chia hết cho x
câu 1
96 chia hết cho 3,6,....
120 chia hết cho 2,3,4,5,6,8,10,12...
Tìm x thuộc Z biết :
a, x+3 chia hết cho x-1
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
a, x+3 chia hết cho x-1
Ta có: x+3=(x+1)+2
=> 2 chia hết cho x+1
=>x+1 thuộc Ư(2)= {1, -1, 2, -2}
=> x thuộc {0,-2, 1, -3}
b.
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
Ta có:
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để (x + 3) \(⋮\left(x-1\right)\) thì 4 \(⋮\left(x-1\right)\)
\(\Rightarrow\) x - 1 = 1; x - 1 = -1; x - 1 = 2; x - 1 = -2; x - 1 = 4; x - 1 = -4
*) x - 1 = 1
x = 2
*) x - 1 = -1
x = 0
*) x - 1 = 2
x = 3
*) x - 1 = -2
x = -1
*) x - 1 = 4
x = 5
*) x - 1 = -4
x = -3
Vậy x = 5; x = 3; x = 2; x = 0; x = -1; x = -3
a) Ta có: x + 3 \(⋮\)t x - 1
\(\Rightarrow\) (x - 1) + 4 \(⋮\) x - 1
do x - 1 \(⋮\) x-1
\(\Rightarrow\) 4 \(⋮\) x -1
\(\Rightarrow\) x - 1 \(\in\) Ư(4) = {4;-4;2;-2;1;1}
✳ x - 1 = 4 ✳ x - 1 = -4 ✳ x - 1 = 2
x = 4 + 1 =5 x = -4 + 1 = -3 x = 2 + 1 = 3
✳ x - 1 = -2 ✳ x - 1 = 1 ✳ x - 1 = -1
x = -2 + 1 = 1 x = 1 + 1 = 2 x = -1 + 1 = 0
\(\Rightarrow\) x = {5;-3;3;1;2;0}
a) \(Ư\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Suy ra \(x\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
b) \(Ư\left(13\right)=\left\{\pm1;\pm13\right\}\)
x + 1 | 1 | 13 | -1 | -13 |
x | 0 | 12 | -2 | -14 |
Suy ra \(x\in\left\{0;12;-2;-14\right\}\)
c) Số nào chia hết cho x - 3 vậy????
d) \(\left(x+8\right)⋮\left(x+2\right)\Leftrightarrow\left(x+2+6\right)⋮\left(x+2\right)\)
Mà x + 2 chia hết cho x + 2 nên 6 chia hết cho x + 2
\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x + 2 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
x | -1 | 0 | 1 | 4 | -3 | -4 | -5 | -8 |
Suy ra \(x\in\left\{-1;0;1;4;-3;-4;-5;-8\right\}\)
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
1.Tìm x
Cho 5x+7y chia hết cho 11 . Chứng minh rằng 2x+5y chia hết cho11
2.Tìm x thuộc Z biết rằng x-y.x+1=15
3. Tìm n thuộc N để
a.27-5n chia hết cho n
b. 2n+3 chia hết cho n-2
Câu 1 : Tìm x thuộc Z biết:
a) ( x-5 ) chia hết cho ( x+2)
b) ( 2x+3) chia hết cho ( x-5)
c) ( x^2 + 5 ) chia hết cho ( x-3 )
Câu 2 : Tìm x,y thuộc Z
a) ( x+5) . ( y-7) =11
b) ( 2x+1) . ( y-2) =-8
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
Bài 1 : Tìm n thuộc N* sao cho: n^2 + 9n -2 chia hết cho 11.
Bài 2: Tìm x thuộc Z sao cho x^3 - 8x^2 + 2x chia hết cho x^2 +1
Cho tổng S = 2 + 4 + 6 + 8 + x với x thuộc N. Để S chia hết cho 3 thì điều kiện của x là : x chia 3 dư 1, x chia 3 dư 2, x chia hết cho 3, x ko chia hết cho 3. Tìm x
tìm x; y thuộc N* mà x+2 chia hết cho y; y+3 chia hết cho x