Cho 0 < a < 1. Rút gọn bieur thức:
P=( \(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1+a^2}+a-1}\))
Cho 0 < a < 1.Rút gọn:
\(P=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1+a^2}+a-1}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)....\)
a) Rút gọn A, b) tìm a để A<0.c) Tìm A để A=-2
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\).\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
= \(\left[\left(\frac{\sqrt{a}}{2}\right)^2-2\frac{\sqrt{a}}{2}\frac{1}{2\sqrt{a}}+\left(\frac{1}{2\sqrt{a}}\right)^2\right]\).\(\left[\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{a-1}\right]\)
=\(\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1\right)^2}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)^2}{a-1}\right]\)
=\(\left(\frac{a^2}{4a}-\frac{2a}{4a}+\frac{1}{4a}\right)\).\(\left[\frac{\left[\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\right]\cdot\left[\left(\sqrt{a}-1\right)+\left(\sqrt{a}+1\right)\right]}{a-1}\right]\)
=\(\left(\frac{a^2-2a+1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1-\sqrt{a}+1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right]\)
=\(\frac{\left(a-1\right)^2}{1}\).\(\frac{-4\sqrt{a}}{a-1}\)
=\(\frac{-\left(a-1\right)}{1}\)= - a + 1
hok tốt
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0
Cho biểu thức:
\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a) Tìm đkxđ và rút gọn A
b) Tìm giá trị của a để A < 0
Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao
a, Để A xác định => \(\hept{\begin{cases}\sqrt{a}+1\ne0\\\sqrt{a}-1\ne0\\\sqrt{a}>0\end{cases}}\)
=>\(\hept{\begin{cases}a\ne1\\a>0\end{cases}}\)
\(A=\left(\frac{a}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{a-1}\right)\)
=\(\frac{a-1}{2\sqrt{a}}.\frac{\left(-4\sqrt{a}\right)}{a-1}\)
= -2
b, Vì giá trị của A không phụ thuộc vào giá trị của a=>với mọi giá trị của biến a thì A=-2 luôn bé hơn 0
rút gọn :
B=\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}+a-1}\right)^2\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\) với 0<a<1
Trên olm rất ít người học lớp 9 dùng , bạn có thể lên Hh để các thầy cô giảng cho nhé !
2,1. Rút gọn M = \(\left(\frac{1}{a+\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right):\frac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
Với a > 0 ; a # 1
1) A=\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a. Rút gọn A b. Tìm a để A=7 c. Tìm a để A>6
2) A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a. Rút gọn A b. tìm x để A<0
3)\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a. Rút gọn A b. Tìm a để A=2 c. Tìm giá trị nhỏ nhất của A
GIÚP MÌNH ĐI MẤY PẠN !!! THKS NHÌU
Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm
1)đặt nhân tử chung quy đồng là xong
2)phân tích x+2cănx-3=(1-cănx)(3+cănx)
3)2a+căn a đặt căn a ra r rút gọn
rút gọn biểu thức
\(\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}vớia>0;a\ne1\)
\(\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=\left(\frac{0}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=0.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=0\)
\(A=\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) đkxđ:\(a>0;a\ne1\)
\(A=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}}\)\
\(A=0\)
cho biểu thức: A=\(\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)
a) rút gọn A
b) tìm x để A=0
ĐKXĐ: \(x\ge4\)
a/ \(A=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\left[\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\left(\frac{x-4-x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(-3\right)}\)
\(=\frac{\sqrt{x}-2}{-3\sqrt{x}}\)
b/ A = 0 \(\Rightarrow\frac{\sqrt{x}-2}{-3\sqrt{x}}=0\Rightarrow\sqrt{x}-2=0\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Cho mình sửa lại:
Điều kiện: x > 4
nên câu b loại x = 4 nha