Chứng minh rằng 1 + 1 có thể bằng một số tự nhiên bất kì mà không nhất thiết phải là 2.
cho 100 số tự nhiên bất kì. chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của 2 số tùy ý chia hết cho 7
chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết
chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết
Sao chửi nhau thế
Kb hem 😊
Cho 100 số tự nhiên bất kì. Chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của hai số tùy ý chia hết cho 7.
CHÚNG TA CÓ TỔNG CỘNG 7 SỐ DƯ
TA LẤY 100 ĐỒNG DƯ VS 2 (MOD 7)MÀ 100/7=14(DƯ 2)
=>CHẮC CHẮN 2 SỐ ĐÓ SẼ CÙNG SỐ DƯ VS 14 SỐ TRONG CÁC SỐ DƯ
một số tự nhiên được gọi là thú vị khi nó là tích của dụng hai số nguyên tố( có thể bằng nhau) .hãy chỉ ra ba số tự nhiên liên tiếp đều là số thú vị. chứng minh rằng 4 số tự nhiên liên tiếp bất kì không thể đồng thời là các số thú vị
Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11; 34 = 2.17; 35 = 5.7
Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\) < \(a_3\) < \(a_4\)
Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị
Xét \(a_1>4\)
Ta có: \(a_1\) ; \(a_2\) ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp
=>Tồn tại i để \(a_i⋮4\); \(i\in\left\{1;2;3;4\right\}\)
khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị
Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.
Chứng minh rằng trong 3 số tự nhiên bất kì, thế nào cũng phải có hai số mà tổng của chúng chia hết cho 2.
Gọi 3 số TN lần lượt là a; a+1; a+2 Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1 Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2
Chứng minh rằng trong 3 số tự nhiên bất kì, thế nào cũng phải có hai số mà tổng của chúng chia hết cho 2.
Gọi 3 số TN lần lượt là a; a+1; a+2
Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1
Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2.
1.Cho S=3^0+3^1+3^2+3^3+...+3^10.Tìm chữ số tận cùng của S.CMR:S không phải là số chính phương
2.cho 100 số tự nhiên bất kì . chứng minh rằng ta có thể chọn ra 15 số sao cho 2 số bất kì trong 15 số đó có hiệu chia hết cho 7
3.CMR tồn tại 1 số có dạng 201220122012... chia hết cho 2013
1.S=(3^0+3^1+3^2)+(3^3+3^4+3^5+3^6)+...+(3^27+3^28+3^29+3^30) S=13+3^3.(3^0+3^1+3^2+3^3)+...+3^27.(3^0+3^1+3^2+3^3) =13+3^3.40+...+3^27.40 =13+(3^3+...+3^27).40 =13+(...0) =(...3)
Vậy có tận cùng la 3 va ko co so chính phương nào có tận cùng là 3 nên ....................................
Chứng minh rằng trong 6 số tự nhiên bất kì thì có ít nhất 2 số mà hiệu của chúng chia hết cho 5
Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5.