Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
tìm x,y,z biết
a,\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và x-y+z=-49
b,\(\frac{x}{3}=\frac{y}{4};\frac{y}{4}=\frac{z}{7}\)và 2x+3y-z=186
c,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
Tìm x,y,z biét
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+27^2=108\)
Tìm x,y,z biết
1.\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2+y^2+z^2+29\)
2. \(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}vàx^3-y^3+z^3=-29\)
tìm x,y,z biết
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}và5x+y-2z=28\)
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}và2x+3y-z=124\)
c)\(\frac{x}{2}=\frac{y}{3}vàxy=54\)
d)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}vàx+y+z=49\)
e)\(\frac{x}{5}=\frac{y}{3}vàx^2-y^2=4\)
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
d, Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\). Mà theo đề bài, ta có: x + y + z = 49
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12.\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x}{18}=\frac{2x}{3}=12\Rightarrow x=18\\\frac{12y}{16}=\frac{3y}{4}=12\Rightarrow y=16\\\frac{12z}{15}=\frac{4z}{5}=12\Rightarrow z=15\end{matrix}\right.\)(TMĐK)
Vậy:\(x=18;y=16;z=15\)
e, Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\).Mà theo đề bài, ta có: x2 - y2 = 4
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\\\frac{y^2}{9}=\frac{1}{4}\Rightarrow x^2=\frac{9}{4}\Rightarrow x\in\left\{\frac{3}{2};-\frac{3}{2}\right\}\end{matrix}\right.\)(TMĐK)
Vậy:..................................
Tìm x,y,z biết :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2-y^2+2z^2=108\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=4\\\frac{y^2}{9}=4\\\frac{z^2}{16}=4\end{cases}}\)=> \(\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)
Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x2-y2+2z2=108
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\frac{108}{27}=4\)
vậy:
x/2=4 =>x=4.2=8
y/3=4 =>y=4.3=12
z/4=4 =>z=4.4=16
Tìm \(x,y,z\)biết :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2-y^2+2z^2=108\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=16\\y^2=36\\z^2=64\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)
Tìm x,y,z biết: \(\frac{x}{x+2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
Tìm x,y,z biết : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2-y^2+2z^2=108\)
x/2=y/3=z/4
=>y=3/2x và z=2x
=> y^2=9/4x^2 và z^2=4x^2
Thế vào x^2 – y^2 + 2z^2 = 108
=> x^2 - 9/4x^2 + 2.4x^2=108
<=> 27/4 . x^2 = 108
<=> x^2 = 16
<=> x=4
=> y= 3/2 x = 3/2 . 4 =6 và z=2x=2.4=8