Khi chia số tự nhiên a cho 7 ; 14 ; 49 thì định các số đủ là 4 11 ; 46 . Tìm số a đó ( a nhỏ nhất )
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
chia số tự nhiên a chia cho 7 dư 5, chia số tự nhiên b cho 7 dư 4 chia số tự nhiên c cho 7 dư 3. Tìm số dư khi chia
nhanh cho 1 tk
ò mà nó khó qué ><
Một số tự nhiên a khi chia 7 dư 5 khi chia 13 dư 11. Số tự nhiên a khi chia cho 91 thì dư là
a chia 7 dư 5 suy ra (a-5) chia hết cho 7 suy ra (a+2) chia hết cho 7
a chia 13 dư 11 suy ra (a+11) chia hết cho 13 suy ra (a+2) chia hết cho 13
suy ra (a+2) thuộc BC(7,13)
Vì ƯCLN(7,13)=1 suy ra BCNN(7,13)=91
suy ra +2 chia hết cho 91
suy ra a chia 91 -2=89
Vậy a chia 91 dư 89
http://olm.vn/hoi-dap/question/20050.html
Số tự nhiên a nhỏ nhất sao khi chia a cho 3/5 và khi chia a cho 1 3/7 ta đều được kết quá là số tự nhiên. Vậy số tự nhiên a là số mấy?
a là BCNN của 3/5 và 10/7 tức là a(BCNN) của 5 và 10
a = 10
xl, chưa nghịch đảo, a là BCNN của 3 và 10 = 30
a = 30
Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3/5 và chia a cho 10/7 ta đều dc kết quả là số tự nhiên. Tìm số tự nhiên a
a chia 3/5 thuộc N=)3a chia hết cho 5=)30a chia hết cho 50
a chia 10/7 thuộc N=)10a chia hết cho 7=)30a chia hết cho 21
=)30a chia hết cho BCNN(50,21)
=)30a chia hết cho 1050
=)a chia hết cho 350
mà a nhỏ nhất =)a=350
Số tự nhiên A khi chia cho 9 thì có số dư là 7. Số dư khi chia A cho 3 là:
Câu 10:
A là một số tự nhiên gồm 2015 chữ số 7. A chia cho 3 có số dư là
Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3/5 và chia a cho 1 3/7 ta đều được kết quả là một số tự nhiên. Số tự nhiên a là ...
Một số tự nhiên a khi chia cho 7 dư 4; chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
A. 0
B. 36
C. 3
D. 60
Đáp án cần chọn là: D
Vì a chia cho 7 dư 4⇒(a+3)⋮7
a chia cho 9 dư 6 ⇒(a+3)⋮9
Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.
Do đó (a+3)⋮63⇒a chia cho 63 dư 60.
tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 6/7 và chia a cho 10/11 ta được kết quả là số tự nhiên.
nguyễn minh tâm ngu thế ko k là đúng đắn
một số tự nhiên a khi chia cho 7 dư 4, khi chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
vì a chia 7 dư 4 nên a+3 chia hết cho 7
vì a chia 9 dư 6 nên a+3 chia hết cho 9
==> a+3 chia hết cho 7 và 9
mã 7 và 9 nguyên tố cùng nhau
==>a+3 chia het cho 63
==> a chia 63 du 60
a chia cho 7 dư 4 => a+3 chia hết cho 7
a chia cho 9 dư 6 => a+3 chia hết cho 9
Suy ra a+3 chia hết cho cả 7 và 9
=>a+3 chia hết cho 63
=>a chia 63 dư (63-3) => a chia 63 dư 60