Tìm GTNN của \(x^2+y^2+\frac{2}{xy}\) với x,y cùng dấu.
tìm giá trị nhỏ nhất của \(x^2+y^2+\frac{2}{xy}\)với x,y cùng dấu
Ta co:
\(x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)
Dau '=' xay ra khi \(x=y=1\)hoac \(x=y=-1\)
Áp dụng BĐT Cauchy cho 2 số không âm:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)(Vì x,y cùng dấu)
và \(xy+\frac{1}{xy}\ge2\sqrt{\frac{xy}{xy}}=2\)(Vì x,y cùng dấu)
\(\Rightarrow x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)(Vì \(xy+\frac{1}{xy}\ge2\left(cmt\right)\))
Vậy GTNN của \(x^2+y^2+\frac{2}{xy}\)là 4\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)
Tìm GTNN của \(A=\frac{x^2+y^2}{x-y}\) với x>y>0,xy=1
A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)
A>=2\(\left(1+\sqrt{2}\right)\)
dang thuc xay ra khi
x-y=\(\sqrt{2}\)
Tìm GTNN của \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
\(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}.\)
Áp dụng BDDT Cô-si ta có:
\(B\ge2\sqrt{\left(\frac{x^2+y^2}{xy}\right)\left(\frac{xy}{x^2+y^2}\right)}=2\sqrt{1}=2\)
Dấu = xảy ra khi x=y=...
Vậy Min B=2 khi x=y=...
Sai ở đâu vậy?
Ở chỗ giá trị x,y phải ko
Tính lại thì ko có giá trị nào của x,y để Mib B=2 cả :')
Sorry
a)cm bất đẳng thức:\(\frac{x}{y}+\frac{y}{x}\ge2\)(x;y cùng dấu)
b)tìm GTNN của biểu thức sau.P=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)(với x\(\ne\)0;y\(\ne\)0)
\(\text{Tìm GTNN của : }A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x;y>0\text{ và }x+y<1\)
\(M=\frac{2}{xy}+\frac{3}{^{x^2+y^2}}\)
với x,y dương và x+y=1. Tìm GTNN của M
Cho x,y >0 và \(^{\left(x+y-1\right)^2}\)= xy .
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Cho x, y > 0. Tìm GTNN của biểu thức \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^{2}+y^{2}}\)
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
Dạ đây là bất đẳng thức Cô-si ạ, bạn có thể chứng minh bằng cách sau:
Ta có: \(\left(x-y\right)^2\ge0\left(\forall xy\right)\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\ge\sqrt{4xy}\)
\(\Leftrightarrow x+y\ge2\sqrt{xy}\)
Bạn áp dụng bất đẳng thức trên vào bài làm là được ạ!
Cho biểu thức
: \(M=\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)với x>y>0
Tìm GTNN của \(N=x^2-\frac{M}{y\left(x+y\right)}\)với x>y>0