Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trinh Bảo
Xem chi tiết
Phạm Trọng An Nam
Xem chi tiết
Lê Thị Diễm Quỳnh
Xem chi tiết
Lê Huỳnh Minh Ánh
14 tháng 7 2016 lúc 19:00

\(\frac{49}{50}nha\)

Nguyễn Trúc Quỳnh
Xem chi tiết
Sagittarus
Xem chi tiết
giang ho dai ca
5 tháng 6 2015 lúc 21:01

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)

Chester Jerry
5 tháng 4 2017 lúc 8:11

        \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)

\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)

Nguyễn Thị MInh Huyề
25 tháng 4 2019 lúc 16:55

hai bạn trước đó gửi sai hết rùi. đúng theo sách NÂNG CAO PHÁT TRIỂN TOÁN 6 TẬP 2 thì bài này có đáp án thì bằng 1353/8120 nhé

tvhuybrdvuyk
Xem chi tiết
Phạm Trung Thành
8 tháng 10 2015 lúc 21:41

Lại phải giải hết 
Gọi dãy số trên là A
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{200.201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-.....+\frac{1}{200.201.202}-\frac{1}{201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{201.202.203}\)(chỗ này lm hơi tắt tí )
\(3A=\frac{1}{6}-\frac{1}{8242206}=\frac{1373701}{8242206}-\frac{1}{8242206}=\frac{1373700}{8242206}\)
\(A=\frac{1373700}{8242206}:3=\frac{457900}{8242206}\)

tvhuybrdvuyk
Xem chi tiết
Phạm Trọng An Nam
Xem chi tiết
Pham Van Hung
17 tháng 7 2018 lúc 20:24

Đặt A là biểu thức của đề bài.

Ta có: 3/ 1.2.3.4 = 1/ 1.2.3 -1/ 2.3.4

          3/ 2.3.4.5 = 1/ 2.3.4 -1/ 3.4.5

          3/ n(n+1)(n+2)(n+3) = 1/ n(n+1)(n+2) -1/ (n+1)(n+2)(n+3)

Do đó: 3A = 1/ 1.2.3 -1/ 2.3.4 + 1/ 2.3.4 - 1/ 3.4.5 +...+ 1/ n(n+1)(n+2) - 1/ (n+1)(n+2)(n+3)

3A = 1/ 1.2.3 - 1/ (n+1)(n+2)(n+3)

3A = 1/6 - 1/ (n+1)(n+2)(n+3)

A = 1/18 - 1/ 3(n+1)(n+2)(n+3)

Đó là kết quả rút gọn. Chúc bạn học tốt.

kudo shinichi
17 tháng 7 2018 lúc 20:24

Đặt \(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(\Rightarrow3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}-\frac{1}{\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(A=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)

B tự làm nốt nhé

Bài này áp dụng công thức:

 \(\frac{a}{b.c.d.e}=\frac{1}{b.c.d}-\frac{1}{c.d.e}\)( đk: \(e-b=a\))

Nguyễn Tũn
1 tháng 8 2018 lúc 22:19

hãy k cho tui

tui ko k lại đâu

mại dô!!!!!

THANKS

Công chúa Lọ Lem
Xem chi tiết
alibaba nguyễn
2 tháng 3 2017 lúc 16:03

Giải tạm trong câu này chứ không thấy đề ở đâu hết. Với n dương

So sánh \(\frac{n}{n+3};\frac{n+1}{n+2}\)

Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì cùng tử nên mẫu bé hơn thì lớn hơn) (1)

Ta lại có: \(\frac{n}{n+2}< \frac{n+1}{n+2}\) (vì cùng mẫu nên tử lớn hơn thì lớn hơn) (2)

Từ (1) và (2) \(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

ngonhuminh
3 tháng 3 2017 lúc 8:40

Ô hay! giải phương trình có phải C/M bất đẳng thức đâu.

ngonhuminh
3 tháng 3 2017 lúc 9:09

Lớp 6 khoai quá

hd: TÁCH SỐ HẠNG mẫu tạo các phân số đối;

\(\frac{1}{1.2.3.4}=\frac{1}{6}\left[\frac{1}{1}-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}\right]\)

\(\frac{1}{2.3.4.5}=\frac{1}{6}\left[\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right]\)

\(\frac{1}{3.4.5.6}=\frac{1}{6}\left[\frac{1}{3}-\frac{3}{4}+\frac{3}{5}-\frac{1}{6}\right]\)

\(\frac{1}{4.5.6.7}=\frac{1}{6}\left[\frac{1}{4}-\frac{3}{5}+\frac{3}{6}-\frac{1}{7}\right]\)

\(\frac{1}{5.6.7.8}=\frac{1}{6}\left[\frac{1}{5}-\frac{3}{6}+\frac{3}{7}-\frac{1}{8}\right]\)

....

....

từ số hạng thứ 4 xuất hiện các cặp đối khi n tăng lên--> tự bạn --> nội suy--phần giữa--> triệt tiêu. 

Tổng quát:

\(\frac{1}{n.\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{6}\left[\frac{1}{n}-\frac{3}{n+1}+\frac{3}{n+2}-\frac{1}{n+3}\right]\)